136.150: Test \#2
 Solutions

1. Find the limit or, if it does not exist, check if it is $\infty,-\infty$ or neither. Show your work.
(a) $\lim _{x \rightarrow 1} \frac{\sqrt{x}-1}{x-1}$
(b) $\lim _{x \rightarrow \infty} \frac{\sqrt{x}+1}{x-1}$

Solution. (a) $\lim _{x \rightarrow 1} \frac{\sqrt{x}-1}{x-1}=\lim _{x \rightarrow 1} \frac{\sqrt{x}-1}{(\sqrt{x}-1)(\sqrt{x}+1)}=\lim _{x \rightarrow 1} \frac{1}{(\sqrt{x}+1)}=\frac{1}{2}$
(b)

$$
\lim _{x \rightarrow \infty} \frac{\sqrt{x}+1}{x-1}=\lim _{x \rightarrow \infty} \frac{\sqrt{x}\left(1+\frac{1}{\sqrt{x}}\right)}{\sqrt{x}\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)}=\lim _{x \rightarrow \infty} \frac{\left(1+\frac{1}{\sqrt{x}}\right)}{\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)}=0
$$

since the denominator in the last fraction tens to infinity while the numerator tends to 1 .
2. Indicate which of the following functions are NOT continuous at the point when $x=2$.

You do NOT need to justify your answers.

$$
f(x)=\frac{x-2}{x-2}, g(x)=\frac{x-2}{x+2}, \quad h(x)=\left\{\begin{array}{cl}
x-2 & \text { if } x<2 \\
0 & \text { if } x \geq 2
\end{array}, \quad k(x)=\left\{\begin{array}{cl}
x+2 & \text { if } x<2 \\
0 & \text { if } x \geq 2
\end{array}\right.\right.
$$

Solution. $f(x)$ and $k(x)$ are not continuous.
($f(x)$ since $f(2)$ does not exist, and $k(x)$ since the one-sided limits at $x=2$ are distinct.)
3. Find the slope of the tangent line to the curve defined by $f(x)=1-x^{2}$ at the point when $x=1$. Show your work. (You may use only the theory from the material covered by this and the first quiz. Only the slope is needed, not the full equation of the tangent line).

Solution. The required slope is the limit $\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}$. We compute:
$\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}=\lim _{h \rightarrow 0} \frac{1-\left(1+h^{2}\right)-\left(1-1^{2}\right)}{h}=\lim _{h \rightarrow 0} \frac{h^{2}}{h}=\lim _{h \rightarrow 0} h=0$.

