136.150: Test \#1 20 minutes

Name: \qquad Student Number: \qquad

1. Find the domain of the following function. State your answer in terms of intervals.

$$
f(x)=\sqrt{1-2 x}
$$

Solution. Because of the root we must have $1-2 x \geq 0$. We solve it:
$1-2 x \geq 0 \Leftrightarrow 1 \geq 2 x \Leftrightarrow \frac{1}{2} \geq x$ where the symbol \Leftrightarrow means "equivalent to", or "means the same as". The last inequality tells us that the domain of this function is the semi-open interval $[1 / 2, \infty)$.
2. Which of the following functions is even, which is odd, which is neither. Justify your answers using the definitions of odd/even functions.

$$
f(x)=x^{4}-x, g(x)=\frac{1}{x^{2}-1}, h(x)=x-2 x^{3}
$$

Solution. $f(-x)=(-x)^{4}-(-x)=x^{4}+x$, and this is neither $f(x)$ nor $-f(x)$. So, this function is neither even nor odd.

$$
\begin{aligned}
& g(-x)=\frac{1}{(-x)^{2}-1}=\frac{1}{x^{2}-1}, \text { so this is an even function. } \\
& h(-x)=(-x)-2(-x)^{3}=x+2 x^{3} \text { which is (easy to see) equal to }-h(x) . \text { So, this is an odd }
\end{aligned}
$$ function.

3. Find $\lim _{x \rightarrow 3^{+}} f(x)$ and $\lim _{x \rightarrow 3^{-}} f(x)$ for $f(x)$ given below. Does $\lim _{x \rightarrow 3} f(x)$ exist? (Justify your answers).

$$
f(x)= \begin{cases}2 x-5 & \text { if } x>3 \\ 2-x & \text { if } x<3\end{cases}
$$

Solution. $\lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{+}} 2 x-5=1$, where we have used the fact that $f(x)$ is $2 x-5$ when $x>3$ (which is what happens in this limit).
$\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{-}} 2-x=-1$, where we have used the fact that $f(x)$ is $2-x$ when $x<3$ (which is what happens in this limit).

Since the two one sided limits (that we have computed above) are not equal, it follows (by a property we have covered) that $\lim _{x \rightarrow 3} f(x)$ does not exist.

