B11. **136.150:** Test #3 Solutions

Name:	Student Number:
tanic:	Student Number:

[6] **1.** Find
$$f'(x)$$
 if $f(x) = (\sin x)^{\cos x}$

Solution. Set $y = \sin x^{\cos x}$, so that $\ln y = \ln(\sin x^{\cos x})$, i.e., $\ln y = (\cos x)\ln(\sin x)$. Differentiate with respect to x to get $\frac{1}{y}y' = (-\sin x)\ln(\sin x) + (\cos x)\frac{1}{\sin x}(\cos x)$, and thus $y' = (\sin x)^{\cos x}[(-\sin x)\ln(\sin x) + (\cos x)\frac{1}{\sin x}(\cos x)]$

[7] **2.** Find all critical points of the function $f(x) = x^3 - 3x^2$ and then classify them using the second derivative test.

Solution. $f'(x) = 3x^2 - 6x$; f'(x) = 0 gives $3x^2 - 6x = 0$ or 3x(x - 2) = 0 which yields x = 0 or x = 2. These are the only two critical points (values). Computing further gives f''(x) = 6x - 6 and so f''(0) = -6 < 0 and f''(2) = 6 > 0. Hence we have a local maximum at x = -6 and a local minimum at x = 6.

[7] **3.** Find the intervals where the function $f(x) = -xe^x$ is concave up and where it is concave down.

Solution. We compute $f'(x) = -e^x - xe^x$ and $f''(x) = -e^x - e^x - xe^x = e^x(-2 - x)$. The only potential inflection point is x = -2. Choose, say, x = -3 in $(-\infty, -2)$ and notice that $f''(-3) = e^x(-2 + 3) > 0$. So the function is concave up over $(-\infty, -2)$. Choose, say, x = 0 in $(-2, \infty)$ and notice that $f''(0) = e^x(-2) < 0$. So the function is concave down over $(-2, \infty)$.