136.150: Test \#3 Solutions

Name: \qquad Student Number: \qquad
[6] 1. Find $f^{\prime}(x)$ if $f(x)=(\sin x)^{\cos x}$
Solution. Set $y=\sin x^{\cos x}$, so that $\ln y=\ln \left(\sin x^{\cos x}\right)$, i.e., $\ln y=(\cos x) \ln (\sin x)$. Differentiate with respect to x to get $\frac{1}{y} y^{\prime}=(-\sin x) \ln (\sin x)+(\cos x) \frac{1}{\sin x}(\cos x)$, and thus $y^{\prime}=(\sin x)^{\cos x}\left[(-\sin x) \ln (\sin x)+(\cos x) \frac{1}{\sin x}(\cos x)\right]$
[7] 2. Find all critical points of the function $f(x)=x^{3}-3 x^{2}$ and then classify them using the second derivative test.

Solution. $f^{\prime}(x)=3 x^{2}-6 x ; f^{\prime}(x)=0$ gives $3 x^{2}-6 x=0$ or $3 x(x-2)=0$ which yields $x=0$ or $x=2$. These are the only two critical points (values). Computing further gives $f^{\prime \prime}(x)=6 x-6$ and so $f^{\prime \prime}(0)=-6<0$ and $f^{\prime \prime}(2)=6>0$. Hence we have a local maximum at $x=-6$ and a local minimum at $x=6$.
[7] 3. Find the intervals where the function $f(x)=-x e^{x}$ is concave up and where it is concave down.

Solution. We compute $f^{\prime}(x)=-e^{x}-x e^{x}$ and $f^{\prime \prime}(x)=-e^{x}-e^{x}-x e^{x}=e^{x}(-2-x)$. The only potential inflection point is $x=-2$. Choose, say, $x=-3$ in $(-\infty,-2)$ and notice that $f^{\prime \prime}(-3)=e^{x}(-2+3)>0$. So the function is concave up over $(-\infty,-2)$. Choose, say, $x=0$ in $(-2, \infty)$ and notice that $f^{\prime \prime}(0)=e^{x}(-2)<0$. So the function is concave down over $(-2, \infty)$.

