B10.

136.150: Test \#3 Solutions

Name:
Student Number: \qquad
[8] 1. Find $f^{\prime}(x)$. Do not simplify your answer after differentiating.
(a) $f(x)=\frac{\sqrt{x}}{\sin x+\cos x}$
(b) $f(x)=(1+\tan (1-x))^{-2}$

Solution. (a)
$f^{\prime}(x)=\frac{(\sqrt{x})^{\prime}(\sin x+\cos x)-\sqrt{x}(\sin x+\cos x)^{\prime}}{(\sin x+\cos x)^{2}}=\frac{\frac{1}{2 \sqrt{x}}(\sin x+\cos x)-\sqrt{x}(\cos x-\sin x)}{(\sin x+\cos x)^{2}}$.
(b) $f^{\prime}(x)=(-2)(1+\tan (1-x))^{-1}\left(\frac{1}{\cos ^{2}(1-x)}\right)(-1)$
[6] 2. Find y^{\prime} at the point $(1,1)$ if $y^{2}+x y=2$.
Solution. $\frac{d}{d x}\left(y^{2}+x y\right)=\frac{d}{d x}(2)$; so $2 y \frac{d y}{d x}+y+x \frac{d y}{d x}=0$. At the given point we have $x=1$ and $y=1$, so that $2 \frac{d y}{d x}+1+\frac{d y}{d x}=0$, from where we find that $\frac{d y}{d x}=-\frac{1}{3}$.
[6] 3. Suppose the sides of a square are increasing in such a way that the area of the square is increasing at the rate of $4 \mathrm{~m} / \mathrm{sec}$. How fast is the side of the square increasing at the moment when the area is $25 m^{2}$? Justify your answer.

Solution. $A=$ area of the square; $x=$ the length of a side of the square. Then $A=x^{2}$. Differntiate with respect to time t to get $\frac{d A}{d t}=2 x \frac{d x}{d t}$. At the given moment the area is $25 \mathrm{~m}^{2}$ and so the side is $5 m$. Since $\frac{d A}{d t}$ is fixed to $4 m / \mathrm{sec}$, we have $4=2(5) \frac{d x}{d t}$ from where we find that $\frac{d x}{d t}=\frac{2}{5} \mathrm{~m} / \mathrm{sec}$, i.e., x is increasing at the rate of $\frac{2}{5} \mathrm{~m} / \mathrm{sec}$.

