Name:_____

Student Number: _____

(a)
$$f(x) = \frac{\sqrt{x}}{\sin x + \cos x}$$

(b) $f(x) = (1 + \tan(1 - x))^{-2}$

Solution. (a)

$$f'(x) = \frac{\left(\sqrt{x}\right)'(\sin x + \cos x) - \sqrt{x}(\sin x + \cos x)'}{(\sin x + \cos x)^2} = \frac{\frac{1}{2\sqrt{x}}(\sin x + \cos x) - \sqrt{x}(\cos x - \sin x)}{(\sin x + \cos x)^2}$$

(b)
$$f'(x) = (-2)(1 + \tan(1-x))^{-1} \left(\frac{1}{\cos^2(1-x)}\right)(-1)$$

[6] **2.** Find y' at the point (1,1) if $y^2 + xy = 2$.

Solution. $\frac{d}{dx}(y^2 + xy) = \frac{d}{dx}(2)$; so $2y\frac{dy}{dx} + y + x\frac{dy}{dx} = 0$. At the given point we have x = 1 and y = 1, so that $2\frac{dy}{dx} + 1 + \frac{dy}{dx} = 0$, from where we find that $\frac{dy}{dx} = -\frac{1}{3}$.

[6] **3.** Suppose the sides of a square are increasing in such a way that the area of the square is increasing at the rate of 4m / sec. How fast is the side of the square increasing at the moment when the area is $25m^2$? Justify your answer.

Solution. $A = \text{area of the square; } x=\text{the length of a side of the square. Then } A = x^2$. Differntiate with respect to time *t* to get $\frac{dA}{dt} = 2x\frac{dx}{dt}$. At the given moment the area is $25m^2$ and so the side is 5m. Since $\frac{dA}{dt}$ is fixed to $4m/\sec$, we have $4 = 2(5)\frac{dx}{dt}$ from where we find that $\frac{dx}{dt} = \frac{2}{5}m/\sec$, i.e., *x* is increasing at the rate of $\frac{2}{5}m/\sec$.