B09.

136.150: Test \#2 Solutions

Name: \qquad Student Number: \qquad
[6] 1. Find all horizontal asymptotes of the function $f(x)=\frac{\sqrt{x^{2}}+1}{x-1}$.
Solution. $\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}}+1}{x-1}=\lim _{x \rightarrow \infty} \frac{x+1}{x-1}=\lim _{x \rightarrow \infty} \frac{x(1+1 / x)}{x(1-1 / x)}=1$. So $y=1$ is a horizontal asymptote as $x \rightarrow \infty$.

$$
\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}}+1}{x-1}=\lim _{x \rightarrow-\infty} \frac{-x+1}{x-1}=\lim _{x \rightarrow-\infty}-1=-1 . \text { So } y=-1 \text { is a horizontal }
$$ asymptote as $x \rightarrow-\infty$.

[7] 2. (a) What does it mean to say that a function $f(x)$ is continuous at $x=2$? (Write down the definition.)
(b) Find the value of the constant c so that the function $f(x)=\left\{\begin{array}{cc}c x-2 & \text { if } x>2 \\ x^{2}-2 c x & \text { if } x \leq 2\end{array}\right.$ is continuous at $x=2$. (Justify your answer using one-sided limits.)

Solution. (a) $f(2)=\lim _{x \rightarrow 2} f(x)$.
(b) $f(2)=2^{2}-(2 c) 2=4-4 c$
$\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}} c x-2=2 c-2$
$\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}} x^{2}-2 c x=4-4 c$. For the function to be continuous all of these 3
numbers should be equal, which gives $2 c-2=4-4 c$. Solve this to get $c=1$.
[7] 3. (a) Compute $f^{\prime}(x)$ if $f(x)=5 \sqrt[5]{x}+\frac{4}{x^{2}}$
(b) Compute $g^{\prime}(x)$ if $g(x)=\frac{\sqrt{x}-x}{x^{2}}$ (Note: all computations should be based on the material covered for this test; in particular, the "quotient rule" may not be used).

Solution. (a) $f^{\prime}(x)=\left(5 \sqrt[5]{x}+\frac{4}{x^{2}}\right)^{\prime}=\left(5 x^{\frac{1}{5}}\right)^{\prime}+\left(4 x^{-2}\right)^{\prime}=5 \frac{1}{5} x^{-\left(\frac{4}{5}\right)}+4(-2) x^{-3}=x^{-\left(\frac{4}{5}\right)}-8 x^{-3}$.
(b) $g(x)=\frac{\sqrt{x}-x}{x^{2}}=\frac{x^{\frac{1}{2}}-x}{x^{2}}=\frac{x^{\frac{1}{2}}}{x^{2}}-\frac{x}{x^{2}}=x^{-\left(\frac{3}{2}\right)}-x^{-1}$. So,
$g^{\prime}(x)=\left(x^{-\left(\frac{3}{2}\right)}-x^{-1}\right)^{\prime}=-\frac{3}{2} x^{-\left(\frac{5}{2}\right)}+x^{-2}$

