Name:_____

Student Number: _____

1. Let $f(x) = \sqrt{x-1}$ and let g(x) = 2x

- (a) Find the composition $f \circ g(x)$
- (**b**) Find the domain of the function $f \circ g(x)$.

Solution. (a) $f \circ g(x) = f(g(x)) = f(2x) = \sqrt{2x-1}$.

(b) Because of the root we must have $2x - 1 \ge 0$. We solve it:

 $2x-1 \ge 0 \Leftrightarrow 2x \ge 1 \Leftrightarrow x \ge \frac{1}{2}$ where the symbol \Leftrightarrow means "equivalent to", or "means the same

as". The last inequality tells us that the domain of this function is the semi-open interval $\lfloor \frac{1}{2}, \infty \rfloor$.

2. Find all vertical asymptotes of the function $f(x) = \frac{1}{x-1}$. (Do not forget to justify your answer by means of certain limits.)

Solution. The domain of the function is obviously $(-\infty, 1)$ together with $(1, \infty)$. So, the only potential vertical asymptote is x = 1. We compute

 $\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \frac{1}{x - 1} = +\infty$. This tells us that x = 1 is indeed a vertical asymptote. (So does the following: $\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} \frac{1}{x - 1} = -\infty$.)

3. Compute each of the following limits, or show it does not exist.

(a)
$$\lim_{x \to -2} \frac{2-x}{8-x^3}$$

(b) $\lim_{x \to 2} \frac{2-x}{8-x^3}$

Solution. (a) $\lim_{x \to -2} \frac{2-x}{8-x^3} = \frac{4}{16} = \frac{1}{4}$ (b) $\lim_{x \to 2} \frac{2-x}{8-x^3} = \lim_{x \to 2} \frac{2-x}{(2-x)(4+2x+x^2)} = \lim_{x \to 2} \frac{1}{(4+2x+x^2)} = \frac{1}{12}$.