B08.

136.150: Test \#1 Solutions

Name: \qquad Student Number: \qquad

1. Let $f(x)=\sqrt{x-1}$ and let $g(x)=2 x$
(a) Find the composition $f \circ g(x)$
(b) Find the domain of the function $f \circ g(x)$.

Solution. (a) $f \circ g(x)=f(g(x))=f(2 x)=\sqrt{2 x-1}$.
(b) Because of the root we must have $2 x-1 \geq 0$. We solve it:
$2 x-1 \geq 0 \Leftrightarrow 2 x \geq 1 \Leftrightarrow x \geq \frac{1}{2}$ where the symbol \Leftrightarrow means "equivalent to", or "means the same as". The last inequality tells us that the domain of this function is the semi-open interval $[1 / 2, \infty)$.
2. Find all vertical asymptotes of the function $f(x)=\frac{1}{x-1}$. (Do not forget to justify your answer by means of certain limits.)

Solution. The domain of the function is obviously $(-\infty, 1)$ together with $(1, \infty)$. So, the only potential vertical asymptote is $x=1$. We compute
$\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} \frac{1}{x-1}=+\infty$. This tells us that $x=1$ is indeed a vertical asymptote. (So does the following: $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} \frac{1}{x-1}=-\infty$.)
3. Compute each of the following limits, or show it does not exist.
(a) $\lim _{x \rightarrow-2} \frac{2-x}{8-x^{3}}$
(b) $\lim _{x \rightarrow 2} \frac{2-x}{8-x^{3}}$

Solution. (a) $\lim _{x \rightarrow-2} \frac{2-x}{8-x^{3}}=\frac{4}{16}=\frac{1}{4}$
(b) $\lim _{x \rightarrow 2} \frac{2-x}{8-x^{3}}=\lim _{x \rightarrow 2} \frac{2-x}{(2-x)\left(4+2 x+x^{2}\right)}=\lim _{x \rightarrow 2} \frac{1}{\left(4+2 x+x^{2}\right)}=\frac{1}{12}$.

