## Midterm Exam 136.150 <br> BRIEF Solutions

## Values

[11] 1.
(a)
$\lim _{x \rightarrow 3} \frac{1}{x-3}-\frac{6}{x^{2}-9}=\lim _{x \rightarrow 3} \frac{x+3-6}{(x-3)(x+3)}=\lim _{x \rightarrow 3} \frac{x-3}{(x-3)(x+3)}=\lim _{x \rightarrow 3} \frac{1}{x+3}=\frac{1}{6}$
(b)
$\lim _{x \rightarrow 1} \frac{x^{2}-4 x+3}{x^{2}-1}=\lim _{x \rightarrow 1} \frac{(x-3)(x-1)}{(x-1)(x+1)}=\lim _{x \rightarrow 1} \frac{x-3}{x+1}=\frac{-2}{2}=-1$
(c)
$\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+x}-x\right)=\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+x}-x\right) \frac{\sqrt{x^{2}+x}+x}{\sqrt{x^{2}+x}+x}=\lim _{x \rightarrow \infty} \frac{x^{2}+x-x^{2}}{\sqrt{x^{2}+x}+x}=$
$=\lim _{x \rightarrow \infty} \frac{x}{\sqrt{x^{2}+x}+x}=\lim _{x \rightarrow \infty} \frac{x}{x \sqrt{1+\frac{1}{x}}+x}=\lim _{x \rightarrow \infty} \frac{x}{x\left(\sqrt{1+\frac{1}{x}}+1\right)}=\lim _{x \rightarrow \infty} \frac{1}{\left(\sqrt{1+\frac{1}{x}}+1\right)}=\frac{1}{2}$,
[10] 2. Since the function $f(x)$ is a polynomial over the intervals $(-\infty,-1),(-1,3)$ and $(3,+\infty)$, it is continuous at all points in these intervals.

In order $f(x)$ to be continuous at $x=-1$ it has to be that $\lim _{x \rightarrow-1} f(x)=f(-1)$. We compute:

$$
\begin{aligned}
& f(-1)=2 \\
& \lim _{x \rightarrow-1^{-}} f(x)=2 \\
& \lim _{x \rightarrow-1^{+}} f(x)=-a+b
\end{aligned}
$$

and so it must be that $-a+b=2$.
In order $f(x)$ to be continuous at $x=3$ it has to be that $\lim _{x \rightarrow 3} f(x)=f(3)$. We compute:

$$
\begin{aligned}
& f(3)=-2 \\
& \lim _{x \rightarrow 3^{-}} f(x)=3 a+b \\
& \lim _{x \rightarrow-1^{+}} f(x)=-2
\end{aligned}
$$

and so it must be that $3 a+b=-2$.
Solving $-a+b=2$ and $3 a+b=-2$ gives $a=-1$ and $b=1$.
So, the function $f(x)$ is continuous everywhere if $a=-1$ and $b=1$.
[14] 3.
(a) $\left(4 \sqrt[3]{x}+\sec x+\frac{1}{x^{2}}+\sin 2\right)^{\prime}=\frac{4}{3} x^{-\frac{2}{3}}+\frac{\sin x}{\cos ^{2} x}-2 x^{-3}$
(b) $\left(\frac{x}{x^{2}+\cos x}\right)^{\prime}=\frac{\left(x^{2}+\cos x\right)-x(2 x-\sin x)}{\left(x^{2}+\cos x\right)^{2}}$
(c) $\left(e^{x \tan x}\right)^{\prime}=e^{x \tan x}\left(\tan x+\frac{x}{\cos ^{2} x}\right)$
[6] 4.

$$
\begin{aligned}
& \left(\frac{1}{x+3}\right)^{\prime}=\lim _{h \rightarrow 0} \frac{\frac{1}{x+h+3}-\frac{1}{x+3}}{h}=\lim _{h \rightarrow 0} \frac{x+3-(x+h+3)}{h(x+h+3)(x+3)}=\lim _{h \rightarrow 0} \frac{-h}{h(x+h+3)(x+3)}= \\
& =\lim _{h \rightarrow 0} \frac{-1}{1(x+h+3)(x+3)}=\frac{-1}{(x+3)^{2}}
\end{aligned}
$$

5. $\left(2 e^{-x}+e^{y}\right)^{\prime}=\left(3 e^{x-y}\right)^{\prime}$
$-2 e^{-x}+e^{y} y^{\prime}=3 e^{x-y}\left(1-y^{\prime}\right)$; now substitute $x=0$ and $y=0$ to get
$-2+y^{\prime}=3\left(1-y^{\prime}\right)$ from where we find that $y^{\prime}=\frac{5}{4}$. This is the slope of the
tangent line. Since the $y$-intercept is given to be 0 , the tangent line is $y=\frac{5}{4} x$.
[4] 6. Proven in class and in the textbook.
[8] 7.


V is the volume of the water in the cup; $h$ is the height of the water in the cup; $r$ is the radius of the surface of the water in the cup. We are given that $\frac{d V}{d t}=-2$, where $V=\frac{r^{2} h \pi}{3}$. We see from the picture that $\frac{r}{h}=\frac{4}{6}$ from where we find that $r=\frac{2}{3} h$.
Substitute this in the formula for the volume, get $V=\frac{4 h^{3} \pi}{27}$. Differentiate this with respect to time (and recall that $\frac{d V}{d t}=-2$ ), get $-2=\frac{4\left(3 h^{2}\right) \pi}{27} \frac{d h}{d t}$. At the given moment $h=3$; substitute that in the last equation and solve for $\frac{d h}{d t}$ to get $\frac{d h}{d t}=-\frac{1}{2 \pi}$. So, the level of the water is dropping at the rate $\frac{1}{2 \pi} \mathrm{~cm} / \mathrm{min}$.

