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[15] 1. Calculate each of the following limits if they exist. If the limit does not exist, determine whether 
the limit is ∞ , −∞  or neither. 

 [3] (a) lim
x→∞

e
1
x2

⎛
⎝⎜

⎞
⎠⎟   [Explain your argument in one sentence.] 

Solution. lim
x→∞

e
1
x2

⎛
⎝⎜

⎞
⎠⎟ = 1  since lim

x→∞

1
x2

= 0 , and since exponential functions are continuous. 

 

[4] (b) lim
x→0+

x
2 − x2 + 4

 

Solution.  lim
x→0+

x
2 − x2 + 4

= lim
x→0+

x
2 − x2 + 4

2 + x2 + 4
2 + x2 + 4

= lim
x→0+

x(2 + x2 + 4 )
4 − (x2 + 4)

= lim
x→0+

(2 + x2 + 4 )
−x

= −∞ ; in the 

last step we note that the numerator tends to 4 while the denominator approaches 0 through negative numbers. 

 

 

 

 

 [4] (c) lim
x→− ∞

x + 4x2 + x
x − 3

 

Solution. 

 

lim
x→− ∞

x + 4x2 + x
x − 3

= lim
x→− ∞

x + x2 (4 + 1x)

x − 3
= lim

x→− ∞

x + (−x) (4 + 1x)

x(1− 3x)
=

= lim
x→− ∞

x 1− (4 + 1x)( )
x(1− 3x)

= lim
x→− ∞

1− (4 + 1x)

(1− 3x)
= −1.

  

 

 

[4] (d) Let f (x)  be a function defined on an open interval containing 0,  and suppose −1≤ f (x) ≤ 2 . 

Calculate lim
x→ 0+

x f (x) ; justify your answer. [Hint: Squeeze theorem!]  

Solution. Start with −1≤ f (x) ≤ 2  and multiply the inequalities by x ; this does not affect the orientation of the 

inequality since we multiply by a positive number. Get: − x ≤ x f (x) ≤ 2 x . Now apply the limit, as x 
approaches 0 from the positive side, to all three expressions; the limits preserve the (orientation of) inequalities, 

and so we get lim
x→ 0+

− x( ) ≤ lim
x→ 0+

x f (x)( ) ≤ lim
x→ 0+

2 x( ) . Since lim
x→ 0+

− x( ) = 0 , and since lim
x→ 0+

2 x( ) = 0 , it 

follows from the Squeeze Theorem that lim
x→ 0+

x f (x)( ) = 0 . 
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[8] 2. Consider the following function: f (x) =
x2 if x ≤1

3x − 2 if 1< x ≤ 3
ex−3 + a2 + 5 if x > 3

⎧

⎨
⎪

⎩
⎪

.  

[3] (a) Show that f (x)   is continuous at x = 1  . 

Solution. We need to confirm that lim
x→1−

f (x) = lim
x→1+

f (x) = f (1).  We compute:  

lim
x→1−

f (x) = lim
x→1−

x2 = 1;   lim
x→1+

f (x) = lim
x→1+

(3x − 2) = 1; f (1) = 12 = 1 , and so all three are equal. 

 

 

 

[5] (b) Find all real numbers a for which the function f (x)  is continuous at x = 3 . 

 

Solution. We want to find all a such that lim
x→ 3−

f (x) = lim
x→ 3+

f (x) = f (3).  Computation: 

lim
x→ 3−

f (x) = lim
x→ 3−

(3x − 2) = 7 ; lim
x→ 3+

f (x) = lim
x→ 3+

(ex−3 + a2 + 5) = 1+ a2 + 5 = a2 + 6 ; f (3) = 7 . Hence 

lim
x→ 3−

f (x) = lim
x→ 3+

f (x) = f (3)  becomes 7 = a2 + 6 = 7 , which after solving yields a = 1  or a = −1 . 

 

[8]  3. Prove that if a function f (x)  is differentiable at the point where x = a , then f (x)  is continuous at 
the point where x = a . 

Solution. Suppose f (x)  is differentiable at the point where x = a ; this means that lim
x→ a

f (x)− f (a)
x − a

 exists 

(and is a finite number). We want to show that f (x)  is continuous at the point where x = a , i.e. that 
lim
x→ a

f (x) = f (a) .  

Step 1: lim
x→ a

f (x)− f (a)( ) = lim
x→ a

f (x)− f (a)
x − a

(x − a)=
(1)
lim
x→ a

f (x)− f (a)
x − a

lim
x→ a
(x − a) =

(2)
0 , where in equality (1) 

we used the assumption that lim
x→ a

f (x)− f (a)
x − a

 exists, and in (2) we merely noticed that lim
x→ a
(x − a) = 0 . 

Step 2: lim
x→ a

f (x) = lim
x→ a
( f (x)− f (a)+ f (a))=

(1)
lim
x→ a
( f (x)− f (a))+ lim

x→ a
f (a) =

(2)
0 + f (a) = f (a) , where in (1) we 

used the fact that both limits exist (the first one by Step 1), and in (2) we used what we have computed in 
Step 1.  
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[11] 4. Find ′f (x) . Do NOT simplify your answer after you evaluate the derivative. 

 

 [3] (a) f (x) = e3 + e2x + 1
x25

  

Solution.   

′f (x) = 0 + 2e2x + − 2
5

⎛
⎝⎜

⎞
⎠⎟ x

−7
5 . 

  

 

 

  

 [3] (b) f (x) = (1−10x3)12   

Solution.   

′f (x) = 12 (1−10x3)11(−30x2 ) . 

 

 

 

 

 

 

 

 [5] (c) f (x) = sin x( )1− x23

1+ x
  

Solution. 

′f (x) = cos x( )1− x23

1+ x
+ (sin x)

− 2
3

⎛
⎝⎜

⎞
⎠⎟ x

−1
3

⎛
⎝⎜

⎞
⎠⎟ (1+ x)− 1− x23( )
(1+ x)2
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[9] 5. [2] (a) State the definition of the derivative of a function f (x) . 

 [5] (b) Use the definition of the derivative to evaluate ′f (x)  if f (x) = x2 + 2x + 3 . (No points will be 
awarded if other methods are used.) 

 [2] (c) Find the equation in the form y = mx + b  of the tangent line to f (x) = x2 + 2x + 3  at the point where 
x = 1 . 

Solution 

 (a) ′f (x) = lim
h→ 0

f (x + h)− f (x)
h

. 

 

 (b) 

′f (x) = lim
h→ 0

f (x + h)− f (x)
h

= lim
h→ 0

(x + h)2 + 2(x + h)+ 3− (x2 + 2x + 3)
h

= lim
h→ 0

x2 + 2xh + h2 + 2x + 2h + 3− x2 − 2x − 3
h

=

= lim
h→ 0

2xh + h2 + 2h
h

= lim
h→ 0

h(2x + h + 2)
h

= lim
h→ 0
(2x + h + 2) = 2x + 2

 

 (c) It follows from part (b) that ′f (1) = 4 . Hence the equation of the desired tangent line is y = 4x + b . 
Notice that when x = 1  then f (x) = 6 . Hence the tangent line passes through (1,6) , which means that the 
coordinates of this point satisfy the equation of the tangent line: 6 = (4)(1)+ b , so that b = 2 . Hence the tangent 
line that we wanted is y = 4x + 2 . 
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[9] 6. Consider the region R bounded between two squares, as depicted in the illustration: the smaller square 
has a side of fixed length equal to 3 metres, while the larger square is increasing. If the area of R is changing 

at the rate of 20 m
2

sec , what is the rate of increase of the side-length of the larger square at the moment 

when this side-length is 6 metres? 

 

 

 

 

Solution. Denote the edge-length of the larger square by x, and denote the area of R by A. We find easily that 

A = x2 − 9 . We are given that dA
dt

= 20 m
2

sec ; we want to find dx
dt

 at the moment when x = 6 m .  

We differentiate A = x2 − 9  with respect to time t: dA
dt

= 2x dx
dt

. At the given moment we get 20 = (2)(6) dx
dt

. 

Hence dx
dt

= 10
6
m
sec . 

 

 

 

 
 

 
 
 
 
 
 
 
 

 


