B04.

MATH 1500: Test \#5 (Winter 2014)

Solutions:

[12] 1. The domain of a function $f(x)$ is $(-\infty, \infty)$ and its first derivative is $f^{\prime}(x)=(x-2)(x+1)$. (a) What are the critical points of $f(x)$?
(b) Use the second derivative test to classify the local extrema of $f(x)$.
(c) Find the inflection points and the intervals where $f(x)$ is concave up, and where it is concave down.

Solution. (a) The critical points come from solving $f^{\prime}(x)=0$, which in this case yields $x=2$ or $x=-1$.
(b) The second derivative is $f^{\prime \prime}(x)=2 x-1$. Since $f^{\prime \prime}(2)>0$ it follows that we have a local minimum when $x=2$. Since $f^{\prime \prime}(-1)<0$ it follows that we have a local maximum when $x=-1$.
(c) $f^{\prime \prime}(x)>0$ when $x>\frac{1}{2}$, and $f^{\prime \prime}(x)<0$ when $x<\frac{1}{2}$. It follows that $f(x)$ is concave up over the interval $\left(\frac{1}{2}, \infty\right)$, and it is concave down over the interval $\left(-\infty, \frac{1}{2}\right)$. Consequently $x=\frac{1}{2}$ is the only inflection point.
[13] 2. The sum of two non-positive numbers is -20 . What are these numbers if their product is maximal?

Solution.

Denote these numbers by x and y. So we have $x+y=-20$. We want to maximize their product $P=x y$. From $x+y=-20$ we find that $y=-20-x$. Plug in P to get $P=x(-20-x)=-20 x-x^{2}$. We notice before proceeding that x must be in the interval $[-20,0]$. Now differentiate $P: P^{\prime}=-20-2 x$. Equating this to 0 gives $x=-10$ as the only critical point. The value of P when $x=-10$ is 100 . Since $P(0)=P(-20)=0$, we have that he product is maximal when $x=-10$. Now compute $y=-20-(-10)=-10$.

