MATH 1500: Test \#3 (Winter 2014)

Solutions:

[10] 1. Denote $f(x)=\frac{x+1}{x^{2}-1}$ and $g(x)=\sin \left(x^{2}\right)$
(a) Find $f^{\prime}(x)$. Do NOT simplify your answer
(b) Find $(f(x) g[x])^{\prime}$. Do NOT simplify your answer

Solution.
(4) By the quotient rule, $f^{\prime}(x)=\frac{(x+1)^{\prime}\left(x^{2}-1\right)-(x+1)\left(x^{2}-1\right)^{\prime}}{\left(x^{2}-1\right)^{2}}=\frac{\left(x^{2}-1\right)-(x+1) 2 x}{\left(x^{2}-1\right)^{2}}$.
(6) By the product rule

$$
(f(x) g(x))^{\prime}=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)=\frac{\left(x^{2}-1\right)-(x+1) 2 x}{\left(x^{2}-1\right)^{2}} \sin \left(x^{2}\right)+\frac{x+1}{x^{2}-1} \cos \left(x^{2}\right) 2 x
$$

where in the last step we have used the chain rule.
[5] 2. Find $\lim _{x \rightarrow 0} \frac{\sin 4 x}{\sin 2 x}$.

Solution.
$\lim _{x \rightarrow 0} \frac{\sin 4 x}{\sin 2 x}=\lim _{x \rightarrow 0} \frac{\frac{\sin 4 x}{4 x}}{\frac{4 x}{2 x}}\left(\frac{4}{2}\right)=\frac{4}{2}=2$.
[10] 3. The rim (edge) of a cube is increasing at the rate of $2 \frac{\mathrm{~km}}{\mathrm{~h}}$. How fast is the volume of the cube changing at the moment when the rim is 3 km ? Justify your answer.

Solution. If the volume of the cube is V, and the rim is x, then $V=x^{3}$. Differentiating with respect to time we get $\frac{d V}{d t}=\frac{d V}{d x} \frac{d x}{d t}=3 x^{2} \cdot 2$. At the moment with $x=3$, we get $\frac{d V}{d t}=6\left(3^{2}\right)=54 \frac{\mathrm{~km}}{\mathrm{~h}}$.

