B05.

MATH 1500: Test \#2 (Winter 2014)

Solutions:

[16] 1. Denote $f(x)=\frac{x+1}{x^{2}-1}$.
(a) Find $\lim _{x \rightarrow-1} f(x)$.
(b) Find $\lim _{x \rightarrow \infty} f(x)$.
(c) What can you say about $\lim _{x \rightarrow 1^{+}} f(x)$ and $\lim _{x \rightarrow 1^{-}} f(x)$?
(d) Are there any vertical or horizontal asymptotes of $f(x)$? Write down their equations, and briefly justify your answers.

Solution. (a) $\lim _{x \rightarrow-1} f(x)=\lim _{x \rightarrow-1} \frac{x+1}{x^{2}-1}=\lim _{x \rightarrow-1} \frac{x+1}{(x-1)(x+1)}=\lim _{x \rightarrow-1} \frac{1}{(x-1)}=-\frac{1}{2}$.
(b) .
$\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \frac{x+1}{x^{2}-1}=\lim _{x \rightarrow \infty} \frac{x(1+1 / x)}{x(x-1 / x)}=\lim _{x \rightarrow \infty} \frac{(1+1 / x)}{(x-1 / x)}=0$, since the denominator tends to infinity while the numerator tends to 1 .
(c) $\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} \frac{x+1}{x^{2}-1}=\infty$, and $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} \frac{x+1}{x^{2}-1}=-\infty$.
(d) It follows from part (c) that $x=1$ is a vertical asymptote, and it follows from part (b) that $y=0$ is a horizontal asymptote. ($y=0$ is also a horizontal asymptote to the left, but this is optional.)
[9] 2. (a) Write down the definition the derivative $f^{\prime}(x)$ of a function $f(x)$.
(b) Use only the definition of the derivative as a limit to find $f^{\prime}(x)$ if $f(x)=\sqrt{x+2}$. (No marks will be given if other methods are used.)

Solution.

(a) $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\sqrt{x+h+2}-\sqrt{x+2}}{h}=
$$

(b) $=\lim _{h \rightarrow 0} \frac{\sqrt{x+h+2}-\sqrt{x+2}}{h} \frac{\sqrt{x+h+2}+\sqrt{x+2}}{\sqrt{x+h+2}+\sqrt{x+2}}=\lim _{h \rightarrow 0} \frac{x+h+2-(x+2)}{h(\sqrt{x+h+2}+\sqrt{x+2})}=$
$=\lim _{h \rightarrow 0} \frac{1}{(\sqrt{x+h+2}+\sqrt{x+2})}=\frac{1}{2 \sqrt{x+2}}$

