B04.

MATH 1500: Test \#1 (Winter 2014)

Solutions:

[8] 1. Find the domain of the function $\frac{\sqrt{x-2}}{(x-3)}$.
Solution. For the root to exist it must be $x-2 \geq 0$, that is x must be in $[2, \infty)$. The denominator should not be 0 , which gives $x \neq 3$. So, the domain is $[2,3)$ together with $(3, \infty)$.
[9] 2. Which of the following functions is even, which is odd, which is neither even not odd?

$$
\begin{aligned}
& f(x)=x 2^{\left(x^{2}\right)} \\
& g(x)=\frac{x^{3}+x}{x^{13}+x^{3}} \\
& h(x)=x+1+\frac{1}{x^{2}}
\end{aligned}
$$

Solution.
$f(-x)=(-x) 2^{(-x)^{2}}=-x 2^{\left(x^{2}\right)}=-f(x)$. Hence f is odd.
$g(-x)=\frac{(-x)^{3}+(-x)}{(-x)^{13}+(-x)^{3}}=\frac{-x^{3}-x}{-x^{13}-x^{3}}=\frac{x^{3}+x}{x^{13}+x^{3}}=g(x)$, and so g is even.
$h(-x)=-x+1+\frac{1}{(-x)^{2}}=-x+1+\frac{1}{x^{2}}$. This is neither $h(x)$ nor $-h(x)$. So h is neither even nor odd.
[8] 3. Evaluate the one-sided limits $\lim _{x \rightarrow 1^{+}} \frac{x-1}{|x-1|}$ and $\lim _{x \rightarrow 1^{-}} \frac{x-1}{|x-1|}$. Does $\lim _{x \rightarrow 1^{+}} \frac{x-1}{|x-1|}$ exist? Justify briefly.
Solution.

$$
\begin{aligned}
& \lim _{x \rightarrow 1^{+}} \frac{x-1}{|x-1|}=\lim _{x \rightarrow 1^{+}} \frac{x-1}{x-1}=1 ; \\
& \lim _{x \rightarrow 1^{-}} \frac{x-1}{|x-1|}=\lim _{x \rightarrow 1^{-}} \frac{x-1}{-(x-1)}=-1
\end{aligned}
$$

Since these two limits are distinct it follows that $\lim _{x \rightarrow 1^{+}} \frac{x-1}{|x-1|}$ does not exist.

