SURNAME: (Print in ink) \qquad
GIVEN NAME(S): \qquad
STUDENT NUMBER: \qquad
SIGNATURE: (in ink)
(I understand that cheating is a serious offense)

PLEASE CHECK THE APPROPRIATE BOX BELOW

\square	A01	MWF - 10:30 \& T - 10:00	W. Korytowski
\square	A02	MWF - 9:30	O. Gueye
\square	A03	MWF - 11:30	D. Kalajdzievska
\square	A04	MWF - 12:30	D. Kalajdzievska
\square	A05	TR - 11:30	B. Waters
\square	A06 T - 7:00	W. Korytowski	
\square	A07 MWF - 12:30	M. Virgilio	
\square	A08 MWF - 8:30	K. Gupta	

INSTRUCTIONS TO STUDENTS:

This is a 1 hour exam. Please show your work clearly in the space provided below each question. If you need more room, you may continue your work on the reverse side of the page, but CLEARLY INDICATE that your work is continued.

No textbooks, notes, or other aids are permitted. There are no cellphones or electronic translators permitted.

Please check that you have all of the pages in the exam booklet. This exam has a title page, 5 pages of questions and also 1 blank page for rough work. You may remove the blank page if you want, but be careful not to loosen the staple.

Question	Points	Score
1	15	
2	16	
3	9	
4	5	
5	5	
6	8	
7	12	
Total:	70	

The value of each question is indicated in the lefthand margin beside the statement of the question. The total value of all questions is 70 points.

UNIVERSITY OF MANITOBA

DATE: October 23, 2013
MIDTERM
PAGE: 1 of 6
TIME: 1 hour
DEPARTMENT \& COURSE NO: MATH 1500
EXAMINATION: Introduction to Calculus

1. Evaluate the following limits. If the limit does not exist, explain why, or state whether it tends to ∞ or $-\infty$.
[5] (a) $\lim _{x \rightarrow 3} \frac{2 \sqrt{x+6}-6}{x-3}$
[5] (b) $\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}-3}}{2 x-1}$
[5] (c) $\lim _{x \rightarrow 4} \frac{x-4}{|x-4|}$
2. Find $f^{\prime}(x)$. DO NOT SIMPLIFY YOUR ANSWERS
[4] (a) $f(x)=(\cos x) \cos (\sin x)$
[6] (b) $f(x)=\left(3 x^{3}-\frac{3}{x}+\sqrt{3 x-2}\right)^{5}$
[6]
(c) $f(x)=\frac{x^{2} e^{x}-3 x}{2 x+2}$

UNIVERSITY OF MANITOBA

DATE: $\underline{\text { October 23, } 2013}$| MIDTERM | |
| ---: | ---: |
| DEPARTMENT \& COURSE NO: MATH 1500 | PAGE: 3 of 6 |
| EXAMINATION: Introduction to Calculus | TIME: 1 hour |\quad EXAMINER: Various

[9] 3. Find the equation of the tangent line to the curve $4 x y=\left(x^{2}+y^{2}\right)^{2}$ at the point $(1,1)$.
[5] 4. Use the definition of the derivative to determine $f^{\prime}(x)$ if $f(x)=x^{2}+x$.

UNIVERSITY OF MANITOBA

DATE: October 23, 2013
[5] 5. Prove the following theorem: if $a(x)$ and $b(x)$ are differentiable, then

$$
\frac{\mathrm{d}}{\mathrm{~d} x}[a(x)+b(x)]=\frac{\mathrm{d}}{\mathrm{~d} x} a(x)+\frac{\mathrm{d}}{\mathrm{~d} x} b(x) .
$$

6. If

$$
f(x)=\left\{\begin{array}{ccc}
\frac{x^{2}+x-2}{x-1} & \text { if } & x<1 \\
b & \text { if } & x=1 \\
a x^{2}-6 a & \text { if } & x>1
\end{array}\right.
$$

[5] (a) Find the value(s) of a that will cause $\lim _{x \rightarrow 1} f(x)$ to exist. Justify your answer.
[3] (b) Find the value(s) of b that will cause $f(x)$ to be continuous at $x=1$. Justify your answer.

UNIVERSITY OF MANITOBA

DATE: October 23, 2013
MIDTERM
PAGE: 5 of 6
DEPARTMENT \& COURSE NO: MATH 1500
TIME: 1 hour
EXAMINATION: Introduction to Calculus
EXAMINER: Various

[12] 7. A 10 m ladder is sliding down a vertical wall forming a right triangle with the ground and wall as its sides. At the moment the top of the ladder is 6 m up the wall it is sliding down at $2 \mathrm{~m} / \mathrm{s}$. What is the rate of change of the area of the triangle formed by the ladder, wall, and ground, at this moment?

