Solution; marking scheme

Always give (brief) justification, and show your work.

[15] 1. Find
$$f'(x)$$
:
[5] (a) $f(x) = [\sin(x^2)](\cos^2 x)$
[5] (b) $f(x) = \frac{\sec x}{e^{2x}}$
[5] (c) $f(x) = 3^{\sqrt{1+\sqrt{x}}}$

Solution. (a)
$$f'(x) = [2x\cos(x^2)](\cos^2 x) + [\sin(x^2)][2\cos x(-\sin x)]$$

(b) $f'(x) = \frac{(\sec x)(\tan x)e^{2x} - (\sec x)e^{2x}2}{e^{4x}}$
(c) $f'(x) = 3^{\sqrt{1+\sqrt{x}}} (\ln 3) \frac{1}{2\sqrt{1+\sqrt{x}}} \frac{1}{2\sqrt{x}}$

[10] 2. Find an equation of the tangent line to the curve $y^3 \sin x + 2y + x = 2$ at the point (0,1).

Solution. Differentiate implicitly: $3y^2y'\sin x + y^3\cos x + 2y' + 1 = 0$. Substitute x = 0 and y = 1, to get 1 + 2y' + 1 = 0. From there we find that y' = -1. So $\frac{y-1}{x} = -1$ is an equation of the tangent line.

B18.