Solution; marking scheme

Always give (brief) justification, and show your work.
[5] 1. Find all vertical and horizontal asymptotes of the function $f(x)=\frac{1}{x-2}+1$.
Solution. VA: $\lim _{x \rightarrow 2^{+}} \frac{1}{x-2}+1=\infty\left(\right.$ and $\left.\lim _{x \rightarrow 2^{-}} \frac{1}{x-2}+1=-\infty\right)$, and so $x=2$ is a VA.
HA: $\lim _{x \rightarrow \infty} \frac{1}{x-2}+1=1$ (and $\lim _{x \rightarrow-\infty} \frac{1}{x-2}+1=1$), so $y=1$ is a HA.
[10] 2. Use only the definition of derivative to find $f^{\prime}(0)$ if $f(x)=\sqrt{x+1}$.

Solution.

$$
f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{\sqrt{h+1}-1}{h}=\lim _{h \rightarrow 0} \frac{\sqrt{h+1}-1}{h} \frac{\sqrt{h+1}+1}{\sqrt{h+1}+1}=
$$

$$
=\lim _{h \rightarrow 0} \frac{h+1-1}{h(\sqrt{h+1}+1)}=\lim _{h \rightarrow 0} \frac{1}{\sqrt{h+1}+1)}=\frac{1}{2} .
$$

[10] 3. Find an equation of the tangent line to the curve $f(x)=x^{3}+3 x-2$ at the point corresponding to $x=1$. (You may use the basic properties of differentiation in this question.)

Solution. $f^{\prime}(x)=3 x^{2}+3$, and so $f^{\prime}(1)=6$. This is the slope of the tangent line at the given point. [Note: from here on there are many ways to complete the solution; the following is just one of them.) So, its equation is $y=6 x+b$. The point where this line touches the curve is $(1, f(1))=(1,2)$; so $2=(6)(1)+b$, from where we find $b=-4$. So, $y=6 x-4$ is an equation of the tangent line.

