B16.
MATH 1500: Test \#1 (Fall 2010)

Solution; marking scheme

Always give (brief) justification, and show your work.
[5] 1. Find the domain of the function $\sqrt{(3-2 x)}$. Write your final answer in terms of intervals.

Solution. $3-2 x \geq 0$, so $3 \geq 2 x$, so $3 / 2 \geq x$; so the domain is $(-\infty, 3 / 2$]
[10] 2. Which of the following functions is even, which is odd, which is neither even not odd? Do not forget to justify your answers (show your work).
(a) $f(x)=x^{2}+2^{x}$
(b) $g(x)=\frac{x-x^{7}}{x^{101}+2 x^{3}}$
(c) $h(x)=\frac{x-x^{7}}{x^{2010}+x^{2}}$
$f(-x)=x^{2}+2^{-x}$ and since this is neither $f(x)$ nor $-f(x)$ this function is neither even nor odd. $g(-x)=\frac{-x+x^{7}}{-x^{101}+2 x^{3}}=\frac{x-x^{7}}{x^{101}+2 x^{3}}=g(x)$, so this is an even function.
$h(-x)=\frac{-x+x^{7}}{x^{2010}+x^{2}}=-h(x)$, so this is an odd function.
[10] 3. Evaluate the following limits:
(a) $\lim _{x \rightarrow 2} \frac{x^{2}-4}{\left(x^{2}-x-6\right)}$
(b) $\lim _{x \rightarrow 2} \frac{x^{2}-4}{\left(x^{2}+x-6\right)}$
(a) $\lim _{x \rightarrow 2} \frac{x^{2}-4}{\left(x^{2}-x-6\right)}=\frac{0}{-4}=0$
(b) $\lim _{x \rightarrow 2} \frac{x^{2}-4}{\left(x^{2}+x-6\right)}=\lim _{x \rightarrow 2} \frac{(x-2)(x+2)}{(x-2)(x+3)}=\lim _{x \rightarrow 2} \frac{(x+2)}{(x+3)}=\frac{4}{5}$.

