B4.

MATH 1500: Test \#5 (Winter 2009)

 Solutions[17] 1. Consider the function $f(x)=\frac{x^{2}}{x-1}$. The first and the second derivatives are $f^{\prime}(x)=\frac{x^{2}-2 x}{(x-1)^{2}}$ and $f^{\prime \prime}(x)=\frac{2}{(x-1)^{3}}$ (no need to check this).
[9] (a) Where is $f(x)$ increasing, where is it decreasing?
[7] (b) Where is $f(x)$ concave up, where is it concave down?
Solution. (a) Critical points are $x=2$ and $x=0$ (we get them by solving $f^{\prime}(x)=0$). These split the domain into $(-\infty, 0),(0,1),(1,2)$ and $(2, \infty)$. Choosing numbers in each of these and evaluating the sigh of $f^{\prime}(x)$, we see the following:

Over $(-\infty, 0), f^{\prime}(x)$ is positive; so over that interval $f(x)$ increases.
Over $(0,1), f^{\prime}(x)$ is negative; so over that interval $f(x)$ decreases.
Over $(1,2), f^{\prime}(x)$ is negative; so over that interval $f(x)$ decreases.
Over $(2, \infty), f^{\prime}(x)$ is positive; so over that interval $f(x)$ increases
(b) It is obvious that $f^{\prime \prime}(x)$ is negative for negative $(x-1)$ and positive for positive $(x-1)$. So,
$f(x)$ is concave down for $x-1<0$, i.e., for $x<1$
$f(x)$ is concave up for $x-1>0$, i.e., for $x>1$
[9] 2. Suppose the perimeter of a rectangle is 12 . What are the dimensions of such a rectangle with maximal area? Justify your answer using derivatives.

Solution. Denote the lengths of the sides of the rectangle by x and y. Then we are given that $2 x+2 y=12$, that is, $x+y=6$. The area of the rectangle is $A(x)=x y$. It follows from $x+y=6$ that $y=6-x$. Substituting this in the formula for area we get $A(x)=x(6-x)=6 x-x^{2}$. We want to maximize this function. Compute: $A^{\prime}(x)=6-2 x$ and solving $A^{\prime}(x)=0$ gives $x=3$. This is the only C.P. Since $A^{\prime \prime}(x)=-2<0$ the critical point gives a local maximum. Since this is the only local extremum (and since the function $A(x)$ is differentiable; no points deducted if that is not mentioned) it follows that this local maximum is absolute maximum. The other dimension can be computed from $y=6-x$, so that $y=3$ too.

