B6.

MATH 1500: Test \#3 (Winter 2009)

 Solutions[15] 1. Find $f^{\prime}(x)$ for the following functions (do not simplify):
(a) $f(x)=\sqrt[5]{x}+e \pi$
(b) $f(x)=(\cos x)(\sin x)$
(c) $f(x)=\cos (\sin x)$
(d) $f(x)=\frac{x}{2 x+x^{3}}$
(e) $f(x)=\sqrt{e^{\operatorname{ex} x}}$

Solution.

(a) $f^{\prime}(x)=\frac{1}{5} x^{-\frac{4}{5}}$
(b) $f^{\prime}(x)=-(\sin x)(\sin x)+(\cos x) \cos x$
(c) $f^{\prime}(x)=[-\sin (\sin x)] \cos x$
(d) $f^{\prime}(x)=\frac{\left(2 x+x^{3}\right)-x\left(2+3 x^{2}\right)}{\left(2 x+x^{3}\right)^{2}}$
(e) $f^{\prime}(x)=\frac{1}{2 \sqrt{e^{x c x}}} e^{\operatorname{sex} x} \tan x \sec x$ (or $f^{\prime}(x)=\frac{1}{2 \sqrt{e^{\operatorname{scx}}}} e^{\operatorname{sex} x} \frac{\sin x}{\cos ^{2} x}$)
[10] 2. Find the equation of the tangent line to the curve defined by $x y^{2}+x^{2} y^{5}=6$ at the point $(2,1)$.

Solution.

The equation is $y-1=m(x-2)$, where $m=\frac{d y}{d x}$ at the point $(2,1)$.
Differentiate implicitly: $y^{2}+x 2 y \frac{d y}{d x}+2 x y^{5}+x^{2} 5 y^{4} \frac{d y}{d x}=0$. Put $x=2, y=1$ to get $1+4 \frac{d y}{d x}+4+20 \frac{d y}{d x}=0$, from where we find $\frac{d y}{d x}=-\frac{5}{24}$. So the equation of the tangent line is $y-1=-\frac{5}{24}(x-2)$.

