B4.

MATH 1500: Test \#1 (Fall 2008)
 Solutions

1. Find the domain of the function $\sqrt{(x+1)(x+2)}$.

Solution. Either (a) $x+1 \geq 0$ and $x+2 \geq 0$ or (b) $x+1 \leq 0$ and $x+2 \leq 0$. Case (a) yields $x \geq-1$ and $x \geq-2$, i.e. the interval $[-1, \infty)$. Case (b) gives $x \leq-1$ and $x \leq-2$, i.e. the interval $(-\infty,-2]$. So, the domain consists of the intervals $[-1, \infty)$ and $(-\infty,-2]$.
[Note: they do not have to express the domain in terms of intervals; any correct solution is fine.]
2. Which of the following functions is even, which is odd, which is neither even not odd?

$$
\begin{aligned}
& f(x)=x\left(e^{\left(x^{2}\right)}\right) \\
& g(x)=\frac{x+x^{7}}{x^{101}+x^{3}} \\
& h(x)=x+1+\frac{1}{x}
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& f(-x)=(-x)\left(e^{\left(x^{-x}\right)^{4}}\right)=-x e^{\left(x^{4}\right)}=-f(x), \text { so } f(x) \text { is odd } \\
& g(-x)=\frac{(-x)+(-x)^{7}}{(-x)^{101}+(-x)^{3}}=\frac{(-1)\left(x+x^{7}\right)}{(-1)\left(x^{101}+x^{3}\right)}=\frac{\left(x+x^{7}\right)}{\left(x^{101}+x^{3}\right)}=g(x), \text { so this one is even. } \\
& h(-x)=-x+1-\frac{1}{x} \text { and this is neither } h(x) \text { nor }-h(x) . \text { Neither even nor odd. }
\end{aligned}
$$

3. Evaluate the following limits:
(a) $\lim _{x \rightarrow 1} \frac{x^{2}+x}{\left(x^{2}-3 x-4\right)}$
(b) $\lim _{x \rightarrow-1} \frac{x^{2}+x}{\left(x^{2}-3 x-4\right)}$

Solution.
(a) $\lim _{x \rightarrow 1} \frac{x^{2}+x}{\left(x^{2}-3 x-4\right)}=\frac{2}{-6}$ by substituting.
(b) $\lim _{x \rightarrow-1} \frac{x^{2}+x}{\left(x^{2}-3 x-4\right)}=\lim _{x \rightarrow-1} \frac{x(x+1)}{(x+1)(x-4)}=\lim _{x \rightarrow-1} \frac{x}{(x-4)}=\frac{1}{5}$.

