MATH 1500: Test #1 (Fall 2008) Solutions

1. Find the domain of the function $\sqrt{(x+1)(x+2)}$.

Solution. Either (a) $x + 1 \ge 0$ and $x + 2 \ge 0$ or (b) $x + 1 \le 0$ and $x + 2 \le 0$. Case (a) yields $x \ge -1$ and $x \ge -2$, i.e. the interval $[-1,\infty)$. Case (b) gives $x \le -1$ and $x \le -2$, i.e. the interval $(-\infty, -2]$. So, the domain consists of the intervals $[-1,\infty)$ and $(-\infty, -2]$.

[Note: they do not have to express the domain in terms of intervals; any correct solution is fine.]

2. Which of the following functions is even, which is odd, which is neither even not odd?

$$f(x) = x(e^{(x^{*})})$$
$$g(x) = \frac{x + x^{7}}{x^{101} + x^{3}}$$
$$h(x) = x + 1 + \frac{1}{x}$$

Solution:
$$f(-x) = (-x)(e^{((-x)^{2})}) = -xe^{(x^{2})} = -f(x)$$
, so $f(x)$ is odd
 $g(-x) = \frac{(-x) + (-x)^{7}}{(-x)^{101} + (-x)^{3}} = \frac{(-1)(x + x^{7})}{(-1)(x^{101} + x^{3})} = \frac{(x + x^{7})}{(x^{101} + x^{3})} = g(x)$, so this one is even.
 $h(-x) = -x + 1 - \frac{1}{x}$ and this is neither $h(x)$ nor $-h(x)$. Neither even nor odd.

3. Evaluate the following limits:

(a)
$$\lim_{x \to 1} \frac{x^2 + x}{(x^2 - 3x - 4)}$$

(b)
$$\lim_{x \to -1} \frac{x^2 + x}{(x^2 - 3x - 4)}$$

Solution.

(a)
$$\lim_{x \to 1} \frac{x^2 + x}{(x^2 - 3x - 4)} = \frac{2}{-6}$$
 by substituting.
(b)
$$\lim_{x \to -1} \frac{x^2 + x}{(x^2 - 3x - 4)} = \lim_{x \to -1} \frac{x(x + 1)}{(x + 1)(x - 4)} = \lim_{x \to -1} \frac{x}{(x - 4)} = \frac{1}{5}$$
.