B05.

Math 1500: Quiz \#2

20 minutes

Solutions

[8] 1. Given $f(x)=\left\{\begin{array}{ll}c x+2 & \text { if } x \leq 1 \\ x+2 c & \text { if } x>1\end{array}\right.$ compute $f(1), \lim _{x \rightarrow 1^{+}} f(x)$ and $\lim _{x \rightarrow 1^{-}} f(x)$. Find the constant c such that the function $f(x)$ is continuous at $x=1$.

Solution. $f(1)=c+2, \lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}(x+2 c)=1+2 c, \lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}(c x+2)=c+2$.
The function is continuous at $x=1$ if all of these are equal, which gives $1+2 c=c+1$. Solving this yields $c=0$.
[8] 2. (a) Find $f^{\prime}(x)$ if $f(x)=x e^{x}$.
(b) Find an equation of the tangent line to the curve $f(x)=x e^{x}$ at the point when $x=0$.

Solution. (a) By the product rule we have $f^{\prime}(x)=e^{x}+x e^{x}$.
(b) The slope of the tangent line to the curve $f(x)=x e^{x}$ at the point when $x=0$ is $f^{\prime}(0)=1$. Since $f(0)=0$ the tangent line passes through the point $(0,0)$. So, its equation is $\frac{y}{x}=1$ or $y=x$.
[9] 3. (a) Compute $\lim _{x \rightarrow 0} \frac{x}{\sin (2007 x)}$
(b) Differentiate $f(x)=\frac{e^{x} \tan x}{2 \cos x}$. Do not simplify!

Solution. (a) $\lim _{x \rightarrow 0} \frac{x}{\sin (2007 x)}=\lim _{x \rightarrow 0} \frac{2007 x}{2007 \sin (2007 x)}=\frac{1}{2007} \lim _{x \rightarrow 0} \frac{2007 x}{\sin (2007 x)}=\frac{1}{2007}$.
(b)
$f^{\prime}(x)=\frac{\left(e^{x} \tan x\right)^{\prime}(2 \cos x)-\left(e^{x} \tan x\right)(2 \cos x)^{\prime}}{4 \cos ^{2} x}=\frac{\left(e^{x} \tan x+e^{x} \frac{1}{\cos ^{2} x}\right)(2 \cos x)-\left(e^{x} \tan x\right)(-2 \sin x)}{4 \cos ^{2} x}$

