B04.

Math 1500: Quiz \#1
 20 minutes
 Solutions and marking scheme

[5] 1. Find the domain of the function $f(x)=\frac{\sqrt{x-2}}{x-7}$ and express it in terms of intervals.
Solution. $\quad x-2 \geq 0$ because of the root in the numerator. This tells us that $x \geq 2$. $x-7 \neq 0$ because of the denominator. So, $x \neq 7$.
So, the domain of this function are the intervals $[2,7)$ and $(7, \infty)$.
[10] 2. Is the function $f(x)$ even, odd or neither? Do not forget to show justification.
(a) $f(x)=\frac{x^{3}}{x^{5}-x}$
(b) $f(x)=\frac{x^{3}}{x^{5}-1}$

Solution. (a) $f(-x)=\frac{(-x)^{3}}{(-x)^{5}-(-x)}=\frac{-x^{3}}{-x^{5}+x}=\frac{x^{3}}{x^{5}-x}=f(x)$ and so this function is even.
(b) $f(-x)=\frac{(-x)^{3}}{(-x)^{5}-1}=\frac{-x^{3}}{-x^{5}-1}$ and since this is neither $f(x)$ nor $-f(x)$ this function is neither even nor odd.
[10] 3. Compute each of the following limits, or show it does not exist.
(a) $\lim _{x \rightarrow-2} \frac{2+x}{8-x^{3}}$
(b) $\lim _{x \rightarrow 1} \frac{\sqrt{x}-1}{x-1}$

Solution. (a) Since -2 is in the domain of the rational function $\frac{2+x}{8-x^{3}}$ we simply substitute $x=-2$ in $\frac{2+x}{8-x^{3}}: \lim _{x \rightarrow-2} \frac{2+x}{8-x^{3}}=\frac{0}{8-(-8)}=0$.
(b) $\lim _{x \rightarrow 1} \frac{\sqrt{x}-1}{x-1}=\lim _{x \rightarrow 1} \frac{\sqrt{x}-1}{x-1} \frac{\sqrt{x}+1}{\sqrt{x}+1}=\lim _{x \rightarrow 1} \frac{x-1}{(x-1)(\sqrt{x}+1)}=\lim _{x \rightarrow 1} \frac{1}{(\sqrt{x}+1)}=\frac{1}{2}$.
[Alternatively: $\lim _{x \rightarrow 1} \frac{\sqrt{x}-1}{x-1}=\lim _{x \rightarrow 1} \frac{\sqrt{x}-1}{(\sqrt{x}-1)(\sqrt{x}+1)}=\lim _{x \rightarrow 1} \frac{1}{(\sqrt{x}+1)}=\frac{1}{2}$ where in the first step we have used the difference of squares identity.]

