Math 1500: Quiz #1 20 minutes Solutions and marking scheme

- [5] 1. Find the domain of the function $f(x) = \frac{\sqrt{x-2}}{x-7}$ and express it in terms of intervals. Solution. $x-2 \ge 0$ because of the root in the numerator. This tells us that $x \ge 2$. $x-7 \ne 0$ because of the denominator. So, $x \ne 7$. So, the domain of this function are the intervals [2,7) and (7, ∞).
- [10] 2. Is the function f(x) even, odd or neither? Do not forget to show justification.

(a)
$$f(x) = \frac{x^3}{x^5 - x}$$

(b) $f(x) = \frac{x^3}{x^5 - x}$

(b)
$$f(x) = \frac{1}{x^5 - 1}$$

Solution. (a) $f(-x) = \frac{(-x)^3}{(-x)^5 - (-x)} = \frac{-x^3}{-x^5 + x} = \frac{x^3}{x^5 - x} = f(x)$ and so this function is even.

(**b**)
$$f(-x) = \frac{(-x)^3}{(-x)^5 - 1} = \frac{-x^3}{-x^5 - 1}$$
 and since this is neither $f(x)$ nor $-f(x)$ this

function is neither even nor odd.

[10] 3. Compute each of the following limits, or show it does not exist.

(a)
$$\lim_{x \to -2} \frac{2+x}{8-x^3}$$

(b) $\lim_{x \to 1} \frac{\sqrt{x}-1}{x-1}$

Solution. (a) Since -2 is in the domain of the rational function $\frac{2+x}{8-x^3}$ we simply substitute x = -2in $\frac{2+x}{8-x^3}$: $\lim_{x \to -2} \frac{2+x}{8-x^3} = \frac{0}{8-(-8)} = 0$. (b) $\lim_{x \to 1} \frac{\sqrt{x}-1}{x-1} = \lim_{x \to 1} \frac{\sqrt{x}-1}{\sqrt{x}+1} \frac{\sqrt{x}+1}{\sqrt{x}+1} = \lim_{x \to 1} \frac{x-1}{(x-1)(\sqrt{x}+1)} = \lim_{x \to 1} \frac{1}{(\sqrt{x}+1)} = \frac{1}{2}$. [Alternatively: $\lim_{x \to 1} \frac{\sqrt{x}-1}{x-1} = \lim_{x \to 1} \frac{\sqrt{x}-1}{(\sqrt{x}-1)(\sqrt{x}+1)} = \lim_{x \to 1} \frac{1}{(\sqrt{x}+1)} = \frac{1}{2}$ where in the first step

we have used the difference of squares identity.]