136.271 Midterm Exam 2 Solutions November 21, 2001

(50 minutes; **justify** your answers unless otherwise stated; no calculators)

- 1. Find the interval of convergence of the series $\int_{n=1}^{\bullet} \frac{(3x-2)^n}{n3^n}.$
- Using the ration test: $\lim_{n \to \infty} \left| \frac{\frac{(3x 2)^{n+1}}{(n+1)3^{n+1}}}{\frac{(3x 2)^n}{n3^n}} \right| = |3x 2| \lim_{n \to \infty} \frac{n}{3(n+1)} = \frac{1}{3}|3x 2|$ So, the series

converges if $\frac{1}{3}|3x \ 2 \le 1$, i.e. if $|3x \ 2 \le 3$, i.e. if $|3x \ 2 \le 3$, i.e. if $|3x \ 3 \le 3$, i.e. if $|3x \ 3 \le 5$, which finally tells us that $\frac{1}{3} < x < \frac{5}{3}$.

We now consider the edges: $x = \frac{1}{3}$ yields the series $\frac{1}{n-1} \cdot \frac{(1-2)^n}{n3^n} = \frac{1}{n-1} \cdot \frac{(1)^n}{n}$, which converges by the alternating series test. On the other hand for $x = \frac{5}{3}$ we get the series $\frac{1}{n-1} \cdot \frac{(3)^n}{n3^n} = \frac{1}{n-1} \cdot \frac{1}{n}$ which diverges. So, the interval of convergence is $\frac{1}{3} \cdot \frac{5}{3}$.

2. Find the sum of each of the series $\sum_{n=2}^{\bullet} n(n-1)x^n$ and $\sum_{n=2}^{\bullet} \frac{n(n-1)}{2^n}$.

(All this could be done in the interval of convergence of the series $\sum_{n=0}^{\infty} x^n$, which is 1 < x < 1).

Now note that $\int_{n=2}^{\bullet} \frac{n(n-1)}{2^n}$ is what we get from $\int_{n=2}^{\bullet} n(n-1)x^n$ when $x = \frac{1}{2}$. Consequently $\int_{n=2}^{\bullet} \frac{n(n-1)}{2^n} dx = \frac{1}{2} \int_{n=2}^{\infty} \frac{2}{1 + \frac{1}{2}} dx = 4$

3. Find the sum of the series $\int_{n=0}^{\bullet} \frac{3^n}{5^{n+1} n!}$. [Hint: use a known Maclaurin representation.]

$$e^{x} = \frac{x^{n}}{n!}$$
 for all x. Put $x = \frac{3}{5}$ to get $e^{3/5} = \frac{3^{n}}{5^{n} n!} = 5 \frac{3^{n}}{5^{n+1} n!} = 5 \frac{3^{n}}{5^{n+1} n!}$.
Consequently $\frac{3^{n}}{5^{n+1} n!} = \frac{1}{5} e^{3/5}$.

Evaluate the integral $\int_{0}^{x} \frac{1}{1+t^4} dt$ as a power series. Find the interval of convergence 4. of that power series

First of all we have
$$\frac{1}{1-x} = \int_{0}^{6} x^n$$
 for $1 < x < 1$. So,

$$\frac{1}{1+t^4} = \frac{1}{1 + t^4} = \frac{1}{1 + t^4}$$

get
$$\int_{0}^{x} \frac{1}{1+t^4} dt = \int_{0}^{x} \int_{0}^{\bullet} (1)^n t^{4n} dt = \int_{0}^{\bullet} (1)^n \frac{t^{4n+1}}{4n+1} \Big|_{0}^{x} = \int_{0}^{\bullet} (1)^n \frac{x^{4n+1}}{4n+1} dt$$

Use the binomial formula to expand the function $\frac{x}{\sqrt{4+x^2}}$ as a power series. You **5.** do NOT need to simplify your answer. What is the radius of convergence of the power series.

First of all
$$\frac{1}{\sqrt{4+x^2}} = (4+x^2)^{1/2} = \frac{1}{2} + \frac{x}{2}^{2}$$
. By the binomial formula

$$2 + \frac{x}{2} = \frac{1}{2} + \frac{1}{k} = \frac{1}{2} + \frac{1}{k} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} =$$

consequence we have that

$$\frac{x}{\sqrt{4+x^2}} = \frac{1}{2}x + \frac{x}{2} = \frac{1}{2}x + \frac{x}{2} = \frac{1}{2}x + \frac{1}{2}(\frac{1}{2} + \frac{1}{2}) + \frac{$$

This is true for $1 < \frac{x}{2}^2 < 1$, which means 2 < x < 2. So, the radius of convergence is 2.