136.271
Midterm Exam 2 Solutions
November 21, 2001

(50 minutes; justify your answers unless otherwise stated; no calculators)

1 Find the interval of convergence of the series A%
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Using the ration test: Iim& I3x - 2lim —l|3x- 2. So, the series
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convergesiif :—3|3x- 2< 1,ieif [3x- 2< 3,i.eif -3< 3x- X 3,i.eif -1< 3x< 5,

which finally tellsusthat - %< X< %

We now consider the edges: x—-—yleldstheserlesA( n3) A( Y’ , which
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converges by the alternating series test. On the other hand for x =
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A% = A - which diverges. So, theinterval of convergenceis
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2. Find the sum of eachoftheserlesAn(n )x" andAn(rl 1)
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(All this could be done in the interval of convergence of the series A x", whichis
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- 1< x<1).

Now note that A n(n- Y

iswhat we get from A n(n- )x" when x = % Consequently
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3. Find the sum of the series A
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. [Hint: use aknown Maclaurin
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representation. ]
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Consequently A
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Evduatethe mtegral Um dt asapower series. Find the interval of convergence
of that power series.

First of all wehaveli: Ax“ for - 1< x< 1. So,

n=0
1 A
= = t* - D"t*". Thisisfinefor - 1< - t%< 1,i.e. for
1+t* 1- ( t*) ﬁ( )= ﬁ‘o( )
- I< t< 1. For such valuesof tand for - 1< x< 1lwecan integrateterm by term to
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Use the binomial formulato expand the function \/ﬁ asapower series. You
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do NOT need to simplify your answer. What is the radius of convergence of the
power series.
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First of al : él Eﬁ . By the binomia formula
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consequence we have that
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Thisistruefor - 1< Eg”_ <1, which means - 2< x< 2. S0, the radius of

convergenceis 2.



