Mini Exam (bonus)

1 Suppose $a_{1}=\sqrt{2}$ and $a_{n+1}=\sqrt{a_{n}}$ for $\mathrm{n}=1,2, \ldots$. Is the sequence $\left\{a_{n}\right\}$ convergent ? Justify your answer in not more than two sentences.
Bounded \& decreasing

2 The sum of the series $\sum_{n=0}^{\infty} \frac{2^{n}}{3^{n+1}}$ is
A. ∞
B. $\frac{2}{3}$
C. 1
D. $\frac{3}{2}$
E. None of these.

3 The Ratio Test applied to $\sum_{n=1}^{\infty} \frac{1}{n}$
A. Yields that series diverges.
B. Yields that series converges. C. Is inconclusive,

4 The integral test can be applied to:
A. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$
B. $\sum_{n=0}^{\infty} \frac{3^{n}}{2^{n}}$
(C. $\sum_{n=0}^{\infty} \frac{1}{2^{n}}$
(D) $\sum_{n=2}^{\infty} \frac{1}{\ln n}$

5 The series $\sum_{n=0}^{\infty} \frac{(-1)^{n} 3^{n}}{2^{n}}$
A. Converges absolutely.
B. Converges conditionally. C. Diverges.

6 The center of convergence of $\sum_{n=0}^{\infty} \frac{(-1)^{n}(3 x-2)^{n}}{2^{n}}$ is
A. $\frac{2}{3}$
B. 0
C. 2
D. None of these.
7. The radius of convergence of $\sum_{n=0}^{\infty}\left(\frac{x}{2}\right)^{n}$ is
A. 0
B. 2 .
C. 4
D. $\frac{1}{2}$.
8. The interval of convergence of $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ is
A. 0
B. $(-1,1)$
C. ∞
D $(-\infty, \infty)$
E. None of these.
9. The sum of $\sum_{n=2}^{\infty} \frac{x^{n}}{n!}$ is
A. $e^{x}-e-1$
B. $e^{x}-e$
C. e^{x}
D. $\frac{1}{1-x}-1-x$.
NONE
10. A power series representation for $f(x)=\sin ^{2} x+\cos ^{2} x$ is
A. $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}$
B. $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}$
C. $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{(2 n+2 n+1)}}{(2 n)!(2 n+1)!}$
(D. 1
11. The sum of $\sum_{n=1}^{\infty} n x^{n-1}$, where $-1<x<1$, is
A. $n \frac{1}{1-x}$
B. $-\frac{1}{(1-x)^{2}}$
C. $\left(\frac{1}{1-x}\right)^{\prime}$
D. $x+1$
12. The Maclaurin series representation for $\ln (1+2 x)$ is
A. $\sum_{n=1}^{\infty} \frac{x^{n}}{n}$
B. $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{n}}{n}$
C. $\sum_{n=1}^{\infty} \frac{(-2)^{n-1} x^{n}}{n}$
D. $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}(2 x)^{n}}{n}$
13. The Lagrange remainder if the Maclaurin polynomial of degree 5 is used for $e^{0.3}$ is
A. $\sum_{n=0}^{5} \frac{0.3^{n}}{n!}$.
B. $\frac{e^{X} 0.3^{5}}{5!}$ for some $X, 0 \leq X \leq 0.3$.
C. $\frac{e^{x} 0.3^{6}}{6!}$ for some $X, 0<X<0.3$.
14. Write down the binomial series representation for $\sqrt{\frac{1}{1+x}}$. Do nor simplify.
15. The following sequence of functions converges uniformly to 0 :
A. $\left\{x^{n}\right\}, 0 \leq x \leq 1$.
B. $\left\{x^{n}\right\}, \frac{1}{2} \leq x \leq 1$. C. $\left\{x^{n}\right\}, 0 \leq x<1$.
D. $\left\{x^{n}\right\}, 0<x \leq 1$.
16. Which of the following statements are true.
A. If $\left\{f_{n}(x)\right\}$ converges pointwise to $f(x)$ then it converges uniformly to $f(x)$.
(B) If $\left\{f_{n}(x)\right\}$ converges uniformly to $f(x)$ then it converges pointwise to $f(x)$.
C. If $\left\{f_{n}(x)\right\}$ converges uniformly to $f(x)$ then $\left\{f_{n}^{\prime}(x)\right\}$ converges pointwise to $f^{\prime}(x)$.
D. If $\left\{f_{n}(x)\right\}$ converges uniformly to $f(x)$ and all $f_{n}(x)$ are continuous, then so is $f(x)$.

