136.271
 Midterm Exam 2 Solutions
 November 21, 2001

(50 minutes; justify your answers unless otherwise stated; no calculators)

1. Find the interval of convergence of the series $\sum_{n=1}^{\infty} \frac{(3 x-2)^{n}}{n 3^{n}}$.

Using the ration test: $\left.\lim _{n \rightarrow \infty}\left|\frac{\frac{(3 x-2)^{n+1}}{(n+1) 3^{n+1}}}{\frac{(3 x-2)^{n}}{n 3^{n}}}\right|=|3 x-2| \lim _{n \rightarrow \infty} \frac{n}{3(n+1)}=\frac{1}{3} \right\rvert\, 3 x-2$. So, the series converges if $\frac{1}{3}|3 x-2|<1$, i.e. if $|3 x-2|<3$, i.e. if $-3<3 x-2<3$, i.e. if $-1<3 x<5$, which finally tells us that $-\frac{1}{3}<x<\frac{5}{3}$.
We now consider the edges: $x=-\frac{1}{3}$ yields the series $\sum_{n=1}^{\infty} \frac{(-1-2)^{n}}{n 3^{n}}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$, which converges by the alternating series test. On the other hand for $x=\frac{5}{3}$ we get the series $\sum_{n=1}^{\infty} \frac{(3)^{n}}{n 3^{n}}=\sum_{n=1}^{\infty} \frac{1}{n}$ which diverges. So, the interval of convergence is $\left[-\frac{1}{3}, \frac{5}{3}\right)$.
2. Find the sum of each of the series $\sum_{n=2}^{\infty} n(n-1) x^{n}$ and $\sum_{n=2}^{\infty} \frac{n(n-1)}{2^{n}}$.
$\sum_{n=2}^{\infty} n(n-1) x^{n}=x^{2} \sum_{n=2}^{\infty} n(n-1) x^{n-2}=x^{2} \sum_{n=2}^{\infty}\left(x^{n}\right)^{\prime \prime} \stackrel{\text { in the interval of convergence }}{=} x^{2}\left(\sum_{n=2}^{\infty} x^{n}\right)^{\prime \prime}=$
$=x^{2}\left(\sum_{n=0}^{\infty} x^{n}-1-x\right)^{\prime \prime}=x^{2}\left(\frac{1}{1-x}-1-x\right)^{\prime \prime}=x^{2}\left(\frac{2}{(1-x)^{3}}\right)$
(All this could be done in the interval of convergence of the series $\sum_{n=0}^{\infty} x^{n}$, which is $-1<x<1$).

Now note that $\sum_{n=2}^{\infty} \frac{n(n-1)}{2^{n}}$ is what we get from $\sum_{n=2}^{\infty} n(n-1) x^{n}$ when $x=\frac{1}{2}$. Consequently $\sum_{n=2}^{\infty} \frac{n(n-1)}{2^{n}}=\left(\frac{1}{2}\right)^{2} \frac{2}{\left(1-\frac{1}{2}\right)^{3}}=4$
3. Find the sum of the series $\sum_{n=0}^{\infty} \frac{3^{n}}{5^{n+1} n \text { ! }}$. [Hint: use a known Maclaurin representation.]
$e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ for all x . Put $x=\frac{3}{5}$ to get $e^{3 / 5}=\sum_{n=0}^{\infty} \frac{3^{n}}{5^{n} n!}=5 \sum_{n=0}^{\infty} \frac{3^{n}}{5^{n+1} n!}$.
Consequently $\sum_{n=0}^{\infty} \frac{3^{n}}{5^{n+1} n!}=\frac{1}{5} e^{3 / 5}$.
4. Evaluate the integral $\int_{0}^{x} \frac{1}{1+t^{4}} d t$ as a power series. Find the interval of convergence of that power series.

First of all we have $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$ for $-1<x<1$. So,
$\frac{1}{1+t^{4}}=\frac{1}{1-\left(-t^{4}\right)}=\sum_{n=0}^{\infty}\left(-t^{4}\right)^{n}=\sum_{n=0}^{\infty}(-1)^{n} t^{4 n}$. This is fine for $-1<-t^{4}<1$, i.e. for $-1<t<1$. For such values of t and for $-1<x<1$ we can integrate term by term to get $\int_{0}^{x} \frac{1}{1+t^{4}} d t=\int_{0}^{x}\left(\sum_{n=0}^{\infty}(-1)^{n} t^{4 n}\right) d t=\left.\sum_{n=0}^{\infty}(-1)^{n} \frac{t^{4 n+1}}{4 n+1}\right|_{0} ^{x}=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{4 n+1}}{4 n+1}$.
5. Use the binomial formula to expand the function $\frac{x}{\sqrt{4+x^{2}}}$ as a power series. You do NOT need to simplify your answer. What is the radius of convergence of the power series.

First of all $\frac{1}{\sqrt{4+x^{2}}}=\left(4+x^{2}\right)^{-1 / 2}=\frac{1}{2}\left(1+\left(\frac{x}{2}\right)^{2}\right)^{-1 / 2}$. By the binomial formula $2\left(1+\left(\frac{x}{2}\right)^{2}\right)^{1 / 2}=\frac{1}{2}\left[1+\sum_{k=1}^{\infty} \frac{-1 / 2(-1 / 2-1) \ldots(-1 / 2-k+1)}{k!}\left(\left(\frac{x}{2}\right)^{2}\right)^{k}\right]$. As a
consequence we have that
$\frac{x}{\sqrt{4+x^{2}}}=\frac{1}{2} x\left(1+\left(\frac{x}{2}\right)^{2}\right)^{-1 / 2}=\frac{1}{2}\left[x+\sum_{k=1}^{\infty} \frac{-1 / 2(-1 / 2-1) \ldots(-1 / 2-k+1)}{k!}\left(\frac{x}{2}\right)^{2 k+1}\right]$.
This is true for $-1<\left(\frac{x}{2}\right)^{2}<1$, which means $-2<x<2$. So, the radius of convergence is 2 .

