136.151: Test \#4 20 minutes

Name: \qquad Student Number: \qquad

1. Is the graph of the function $y=\frac{1}{x+1}, x \geq 0$ concave up or concave down? Justify your answer.

Solution. Compute $y^{\prime}=\frac{-1}{(x+1)^{2}}$ and $y^{\prime \prime}=\frac{1}{(x+1)^{3}}$. Since $\frac{1}{(x+1)^{3}}$ is positive for $x \geq 0$, it follows that the graph of our function is concave up over its domain.
2. Find and classify the absolute extrema of the function $f(x)=x^{2}-4 x+3$ over the interval $[0,3]$.

Solution. Compute $f^{\prime}(x)=2 x-4$. Since $\mathrm{x}=2$ is the only solution of $2 x-4=0$, this is the only critical point (and it is in the given interval). We compute $f(2)=-1$ (at the critical point) and $f(0)=3, f(3)=0$ (at the edges of the interval). It follows that -1 is the absolute minimum of the function (and it happens for $\mathrm{x}=2$), while 3 is the absolute maximum of the function (and it happens at $\mathrm{x}=0$).
3. The side of a cubic box is increasing at the rate of $3 \mathrm{~m} / \mathrm{sec}$. How fast is the volume of the box increasing at the moment when the side of the box is $10 \mathrm{~m} . ?$

Solution. Denote the side of the cube by x. Then the volume of the box is $V=x^{3}$. We differentiate with respect to the time t to get (by the chain rule) that $\frac{d V}{d t}=3 x^{2} \frac{d x}{d t}$. At the given moment (when $x=10$) we have $\frac{d V}{d t}=3(100)(3)=900 \mathrm{~m}^{3} / \mathrm{sec}$.

