Name:__

Student Number: _____

1. Is the graph of the function $y = \frac{1}{x+1}$, $x \ge 0$ concave up or concave down? Justify your answer.

Solution. Compute $y' = \frac{-1}{(x+1)^2}$ and $y'' = \frac{1}{(x+1)^3}$. Since $\frac{1}{(x+1)^3}$ is positive for $x \ge 0$, it follows that the graph of our function is concave up over its domain.

2. Find and classify the absolute extrema of the function $f(x) = x^2 - 4x + 3$ over the interval [0,3].

Solution. Compute f'(x) = 2x - 4. Since x=2 is the only solution of 2x - 4 = 0, this is the only critical point (and it is in the given interval). We compute f(2) = -1 (at the critical point) and f(0) = 3, f(3) = 0 (at the edges of the interval). It follows that -1 is the absolute minimum of the function (and it happens for x=2), while 3 is the absolute maximum of the function (and it happens at x=0).

3. The side of a cubic box is increasing at the rate of 3 m/sec. How fast is the volume of the box increasing at the moment when the side of the box is 10 m.?

Solution. Denote the side of the cube by x. Then the volume of the box is $V = x^3$. We differentiate with respect to the time t to get (by the chain rule) that $\frac{dV}{dt} = 3x^2 \frac{dx}{dt}$. At the given moment (when x=10) we have $\frac{dV}{dt} = 3(100)(3) = 900m^3$ /sec.