136.151: Test \#3 Solutions

Name: \qquad Student Number: \qquad

1. Differentiate (with respect to x):
(a) $\ln (\sqrt{\tan x})$
(b) $e^{\cos 2 x}$

Solutions.
(a) $(\ln (\sqrt{\tan x}))^{\prime}=\frac{1}{\sqrt{\tan x}} \frac{1}{2 \sqrt{\tan x}} \frac{1}{\cos ^{2} x}$
(b) $\left(e^{\cos 2 x}\right)^{\prime}=2(-\sin 2 x) e^{\cos 2 x}$
2. Use derivatives to show that the function $\frac{2}{x}$ decreases everywhere over its domain.

Solution. $\left(\frac{2}{x}\right)^{\prime}=-\frac{2}{x^{2}}$ and this is apparently negative for all values of x in the domain of the starting function. Consequently the function $\frac{2}{x}$ always decreases.
3. (a) Find all critical points of the function $f(x)=x^{3}-3 x$.
(b) Classify these points (as yielding a local minimum, a local maximum or neither). Justify your answers (say, by using a table as in class).

Solution. (a) $f^{\prime}(x)=3 x^{2}-3$ and solving $f^{\prime}(x)=0$ yields two critical points $x=1$ and $x=-1$.
(b) The following table does it.

	$(-\infty,-1)$	$(-1,1)$	$(1, \infty)$
x	-2	0	2
$f^{\prime}(x)$	+	-	+
$f(x)$	\nearrow	$\mathbf{\Delta}$	\nearrow

So, we have a local maximum at $\mathrm{x}=-1$ and a local minimum at $\mathrm{x}=1$.

