Name:_____

Student Number: _____

1. Differentiate (with respect to x):

(a)
$$\ln(\sqrt{\tan x})$$

(b) $e^{\cos 2x}$

Solutions. (a)
$$\left(\ln(\sqrt{\tan x})\right)' = \frac{1}{\sqrt{\tan x}} \frac{1}{2\sqrt{\tan x}} \frac{1}{\cos^2 x}$$

(b)
$$(e^{\cos 2x})' = 2(-\sin 2x)e^{\cos 2x}$$

2. Use derivatives to show that the function $\frac{2}{x}$ decreases everywhere over its domain.

Solution. $\left(\frac{2}{x}\right)' = -\frac{2}{x^2}$ and this is apparently negative for all values of x in the domain of the starting function. Consequently the function $\frac{2}{x}$ always decreases.

3. (a) Find all critical points of the function $f(x) = x^3 - 3x$.

(b) Classify these points (as yielding a local minimum, a local maximum or neither). Justify your answers (say, by using a table as in class).

Solution. and x = -1. (a) $f'(x) = 3x^2 - 3$ and solving f'(x) = 0 yields two critical points x = 1(b) The following table does it.

$\langle \cdot \rangle$			
	(−∞,−1)	(-1,1)	(1,∞)
Х	-2	0	2
f'(x)	+	-	+
f(x)	7		

So, we have a local maximum at x=-1 and a local minimum at x=1.