136.151: Test #2 Solutions

1. Evaluate the limit or show it does not exist. In the latter case check if the limit is $+\infty$, $-\infty$ or neither. Identify any horizontal or vertical asymptotes from the two limits below (Do not compute other limits; just extract the information regarding asymptotes from the two limits

below). (a)
$$\lim_{x\to 1^-} \frac{x+1}{x-1}$$
 (b) $\lim_{x\to\infty} \frac{\sqrt{x}+1}{\sqrt{x}-1}$
(a) $\lim_{x\to 1^-} \frac{x+1}{x-1} = -\infty$
Argument: as x approaches 1 from the left hand side, x-1 approaches 0
through negative numbers while at the same time x+1 approaches 2. It follows that the
quotient $\frac{x+1}{x}-1$ is close to 2 divided by a negative number that is close to 0. That yields a
very small negative number that tends to $-\infty$ as x tends to 1 from the left.

(b)
$$\lim_{x \to \infty} \frac{\sqrt{x} + 1}{\sqrt{x} - 1} = \lim_{x \to \infty} \frac{\sqrt{x}(1 + \frac{1}{\sqrt{x}})}{\sqrt{x}(1 - \frac{1}{\sqrt{x}})} = \lim_{x \to \infty} \frac{(1 + \frac{1}{\sqrt{x}})}{(1 - \frac{1}{\sqrt{x}})} = 1$$

The first limit tells us that x=1 is a vertical asymptote for the function $\overline{x-1}$, while the $\frac{\sqrt{x}+1}{\sqrt{x}}$

second limit tells us that y=1 is a horizontal asymptote for the function $\sqrt{x-1}$.

2. Compute f'(-1) if $f(x) = x^2 - 1$ using ONLY the definition of the derivative of a function. Does the function f(x) increase or does it decrease at the moment when x = -1?

x+1

$$f'(-1) = \lim_{h \to 0} \frac{f(-1+h) - f(-1)}{h} = \lim_{h \to 0} \frac{[(-1+h)^2 - 1] - [(-1)^2 - 1]}{h} = \lim_{h \to 0} \frac{-2h + h^2}{h} = \lim_{h \to 0} (-2+h) = -2$$

Since the derivative is negative, the function decreases at that moment.

3.

2,3,4.

- (a) Compute f'(1) if $f(x) = \sqrt{x} + 3$. You may use any of the properties or theorems from the sections covered in this test.
- (**b**) Compute $g'\left(\frac{1}{2}\right)$ if $g(x) = \frac{x^3 7x}{2x}$. You may use any of the properties or theorems from the sections covered in this test.

(c) Use (a) and (b) to show that the tangent line to the curve $f(x) = \sqrt{x} + 3$ at the point when x = 1 is parallel to the tangent line to the curve $g(x) = \frac{x^3 - 7x}{2x}$ when

$$x = \frac{1}{2}.$$
(a) $f'(x) = (x^{1/2} + 2)' = \frac{1}{2}x^{-1/2}$ and so $f'(1) = \frac{1}{2}$.
(b) Notice first that $g(x) = \frac{1}{2}x^2 - \frac{7}{2}$. So, $g'(x) = \frac{1}{2}2x = x$ and so $g'(\frac{1}{2}) = \frac{1}{2}$.

(c) Parts (a) and (b) told us that the slopes of the tangent lines of the two functions at the two points are equal (to 1/2). Consequently these tangent lines are parallel.