136.151: Test \#2 Solutions

1. Evaluate the limit or show it does not exist. In the latter case check if the limit is $+\infty,-\infty$ or neither. Identify any horizontal or vertical asymptotes from the two limits below (Do not compute other limits; just extract the information regarding asymptotes from the two limits
below).
(a) $\lim _{x \rightarrow 1^{-}} \frac{x+1}{x-1}$
(b) $\quad \lim _{x \rightarrow \infty} \frac{\sqrt{x}+1}{\sqrt{x}-1}$
(a) $\lim _{x \rightarrow 1^{-}} \frac{x+1}{x-1}=-\infty$ Argument: as x approaches 1 from the left hand side, $\mathrm{x}-1$ approaches 0 through negative numbers while at the same time $\mathrm{x}+1$ approaches 2 . It follows that the quotient $\frac{x+1 / x-1}{}$ is close to 2 divided by a negative number that is close to 0 . That yields a very small negative number that tends to $-\infty$ as x tends to 1 from the left.
(b)

$$
\lim _{x \rightarrow \infty} \frac{\sqrt{x}+1}{\sqrt{x}-1}=\lim _{x \rightarrow \infty} \frac{\sqrt{x}\left(1+\frac{1}{\sqrt{x}}\right)}{\sqrt{x}\left(1-\frac{1}{\sqrt{x}}\right)}=\lim _{x \rightarrow \infty} \frac{\left(1+\frac{1}{\sqrt{x}}\right)}{\left(1-\frac{1}{\sqrt{x}}\right)}=1
$$

The first limit tells us that $\mathrm{x}=1$ is a vertical asymptote for the function $\frac{x+1}{x-1}$, while the second limit tells us that $\mathrm{y}=1$ is a horizontal asymptote for the function $\frac{\sqrt{x}+1}{\sqrt{x}-1}$.
2. Compute $f^{\prime}(-1)$ if $f(x)=x^{2}-1$ using ONLY the definition of the
derivative of a function. Does the function $f(x)$ increase or does it decrease at the moment when $x=-1$?
$f^{\prime}(-1)=\lim _{h \rightarrow 0} \frac{f(-1+h)-f(-1)}{h}=\lim _{h \rightarrow 0} \frac{\left[(-1+h)^{2}-1\right]-\left[(-1)^{2}-1\right]}{h}=\lim _{h \rightarrow 0} \frac{-2 h+h^{2}}{h}=\lim _{h \rightarrow 0}(-2+h)=-2$
Since the derivative is negative, the function decreases at that moment.
3.
(a) Compute $f^{\prime}(1)$ if $f(x)=\sqrt{x}+3$. You may use any of the properties or theorems from the sections covered in this test.
(b) Compute $g^{\prime}\left(\frac{1}{2}\right)$ if $g(x)=\frac{x^{3}-7 x}{2 x}$. You may use any of the properties or theorems from the sections covered in this test.
(c) Use (a) and (b) to show that the tangent line to the curve $f(x)=\sqrt{x}+3$ at the point when $x=1$ is parallel to the tangent line to the curve $g(x)=\frac{x^{3}-7 x}{2 x}$ when $x=1 / 2$.
(a) $f^{\prime}(x)=\left(x^{1 / 2}+2\right)^{\prime}=\frac{1}{2} x^{-1 / 2}$ and so $f^{\prime}(1)=\frac{1}{2}$.
(b) Notice first that $g(x)=\frac{1}{2} x^{2}-\frac{7}{2}$. So, $g^{\prime}(x)=\frac{1}{2} 2 x=x$ and so $g^{\prime}(1 / 2)=1 / 2$.
(c) Parts (a) and (b) told us that the slopes of the tangent lines of the two functions at the two points are equal (to $1 / 2$). Consequently these tangent lines are parallel.

