Name:____

Student Number: _____

1. Consider the following three lines.

 $l_1: 2y = 2x + 1$ $l_2: y - x = 10$ $l_3: y = -x + 4$

Which of these lines are mutually parallel, which are mutually perpendicular? Why?

Solution.

For l_1 we find that $y = x + \frac{1}{2}$ so that the slope of that line is $m_1 = 1$. For l_2 we find that y = x + 10 so that the slope of that line is $m_2 = 1$. For l_3 we are given that y = -x + 4 so that the slope of that line is $m_3 = -1$.

Since $m_1 = m_2$, the first two lines are parallel. Since $m_1 = -\frac{1}{m_3}$, the first and the third line are perpendicular. Consequently, so are the second and the third.

2. Find the radius and the center of the circle defined by $x^2 + y^2 - 2y = 0$. Show your work.

Solution.

Since $x^2 + y^2 - 2y = x^2 + (y-1)^2 - 1$, the equation becomes $x^2 + (y-1)^2 - 1 = 0$, or equivalently $x^2 + (y-1)^2 = 1$. From there we find that the center of the circle is (0,1) and its radius is 1.

3. (a) Show that $f(x) = x^2 + 4$ is an even function.

(b) Which of the functions $g(x) = x^3 + 1$ and $h(x) = x^3 + x$ is odd? Is any of these two functions even ?

Solution.

(a) $f(-x) = (-x)^2 + 4 = x^2 + 4 = f(x)$ so the function is indeed even. (b) h(x) is odd. Both are not even. 4. Compute $\lim_{x \to 1} \frac{x^2 - 3x + 2}{(x+3)(x-1)}$. Show your work.

Solution.

$$\lim_{x \to 1} \frac{x^2 - 3x + 2}{(x+3)(x-1)} = \lim_{x \to 1} \frac{(x-2)(x-1)}{(x+3)(x-1)} = \lim_{x \to 1} \frac{(x-2)}{(x+3)} = \frac{-1}{4}.$$