136.151: Test \#1 20 minutes

Name: \qquad Student Number: \qquad

1. Consider the following three lines.
$\boldsymbol{l}_{1}: 2 y=2 x+1$
$l_{2}: y-x=10$
$l_{3}: y=-x+4$
Which of these lines are mutually parallel, which are mutually perpendicular? Why?

Solution.

For \boldsymbol{l}_{1} we find that $y=x+\frac{1}{2}$ so that the slope of that line is $m_{1}=1$.
For \boldsymbol{l}_{2} we find that $y=x+10$ so that the slope of that line is $m_{2}=1$.
For l_{3} we are given that $y=-x+4$ so that the slope of that line is $m_{3}=-1$.
Since $m_{1}=m_{2}$, the first two lines are parallel. Since $m_{1}=-\frac{1}{m_{3}}$, the first and the third line are perpendicular. Consequently, so are the second and the third.
2. Find the radius and the center of the circle defined by $x^{2}+y^{2}-2 y=0$. Show your work.

Solution.

Since $x^{2}+y^{2}-2 y=x^{2}+(y-1)^{2}-1$, the equation becomes $x^{2}+(y-1)^{2}-1=0$, or equivalently $x^{2}+(y-1)^{2}=1$. From there we find that the center of the circle is $(0,1)$ and its radius is 1 .
3. (a) Show that $f(x)=x^{2}+4$ is an even function.
(b) Which of the functions $g(x)=x^{3}+1$ and $h(x)=x^{3}+x$ is odd? Is any of these two functions even?

Solution.

(a) $f(-x)=(-x)^{2}+4=x^{2}+4=f(x)$ so the function is indeed even.
(b) $h(x)$ is odd. Both are not even.
4. Compute $\lim _{x \rightarrow 1} \frac{x^{2}-3 x+2}{(x+3)(x-1)}$. Show your work.

Solution.

$\lim _{x \rightarrow 1} \frac{x^{2}-3 x+2}{(x+3)(x-1)}=\lim _{x \rightarrow 1} \frac{(x-2)(x-1)}{(x+3)(x-1)}=\lim _{x \rightarrow 1} \frac{(x-2)}{(x+3)}=\frac{-1}{4}$.

