136.151: Test \#1 20 minutes

Name: \qquad Student Number: \qquad

1. Consider the following three lines.
$l_{1}: y=2 x+1$
$l_{2}: y-2 x=10$
$l_{3}: 2 y=-x+4$
Which of these lines are mutually parallel, which are mutually perpendicular? Why?

Solution.

For \boldsymbol{l}_{1} we are given that $y=2 x+1$ so that the slope of that line is $m_{1}=2$.
For l_{2} we find that $y=2 x+10$ so that the slope of that line is $m_{2}=2$.
For l_{3} we find that $y=-\frac{1}{2} x+2$ so that the slope of that line is $m_{3}=-\frac{1}{2}$.
Since $m_{1}=m_{2}$, the first two lines are parallel. Since $m_{1}=-\frac{1}{m_{3}}$, the first and the third line are perpendicular. Consequently, so are the second and the third.
2. Find the domain of the function $f(x)=\sqrt{1-2 x}$. Show your work.

Solution.

We must have that $1-2 x \geq 0$. Solve this: $1-2 x \geq 0 \Leftrightarrow 1 \geq 2 x \Leftrightarrow \frac{1}{2} \geq x$. So, the domain of the function $f(x)$ is the interval $\left(-\infty, \frac{1}{2}\right]$.
3. (a) Show that $f(x)=x^{3}+x$ is an odd function.
(b) Which of the functions $g(x)=x^{4}+1$ and $h(x)=x^{4}+x$ is even? Is any of these two functions odd?

Solution.

(a) $f(-x)=(-x)^{3}+(-x)=-\left(x^{3}+x\right)=-f(x)$ so the function $f(x)$ is indeed odd.
(b) $g(x)$ is even. Both are not odd.
4. Compute $\lim _{x \rightarrow 1} \frac{(x+3)(x-1)}{x^{2}-3 x+2}$. Show your work.

Solution.

$\lim _{x \rightarrow 1} \frac{(x+3)(x-1)}{x^{2}-3 x+2}=\lim _{x \rightarrow 1} \frac{(x+3)(x-1)}{(x-2)(x-1)}=\lim _{x \rightarrow 1} \frac{(x+3)}{(x-2)}=-4$.

