Name:____

Student Number: _____

1. Consider the following three lines.

 $l_1: y = 2x + 1$ $l_2: y - 2x = 10$ $l_3: 2y = -x + 4$

Which of these lines are mutually parallel, which are mutually perpendicular? Why?

Solution.

For l_1 we are given that y = 2x + 1 so that the slope of that line is $m_1 = 2$. For l_2 we find that y = 2x + 10 so that the slope of that line is $m_2 = 2$.

For l_3 we find that $y = -\frac{1}{2}x + 2$ so that the slope of that line is $m_3 = -\frac{1}{2}$.

Since $m_1 = m_2$, the first two lines are parallel. Since $m_1 = -\frac{1}{m_3}$, the first and the third line are perpendicular. Consequently, so are the second and the third.

2. Find the domain of the function $f(x) = \sqrt{1-2x}$. Show your work.

Solution.

We must have that $1-2x \ge 0$. Solve this: $1-2x \ge 0 \Leftrightarrow 1 \ge 2x \Leftrightarrow \frac{1}{2} \ge x$. So, the domain of the function f(x) is the interval $(-\infty, \frac{1}{2}]$.

3. (a) Show that $f(x) = x^3 + x$ is an odd function.

(b) Which of the functions $g(x) = x^4 + 1$ and $h(x) = x^4 + x$ is even? Is any of these two functions odd?

Solution.

(a) $f(-x) = (-x)^3 + (-x) = -(x^3 + x) = -f(x)$ so the function f(x) is indeed odd. (b) g(x) is even. Both are not odd. 4. Compute $\lim_{x \to 1} \frac{(x+3)(x-1)}{x^2 - 3x + 2}$. Show your work.

Solution.

$$\lim_{x \to 1} \frac{(x+3)(x-1)}{x^2 - 3x + 2} = \lim_{x \to 1} \frac{(x+3)(x-1)}{(x-2)(x-1)} = \lim_{x \to 1} \frac{(x+3)}{(x-2)} = -4.$$