B16.
136.130: Test \#4

20 minutes
Solutions

1. Suppose $\mathbf{u}=(1,0,-2), \mathbf{v}=(1,1,-1), \mathbf{w}=(0,1,-2)$. Compute if possible, otherwise state it is not possible.
(a) $\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})$
(b) $(\mathbf{u} \cdot \mathbf{v}) \times \mathbf{w}$
(c) $\mathbf{u} \times(\mathbf{v} \times(0,0,0))$

Solution. (a) $\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})=\mathbf{u} \cdot\left(\begin{array}{ll}1 & -1 \\ 1 & -2\end{array}\left|,-\left|\begin{array}{ll}1 & -1 \\ 0 & -2\end{array}\right|,\left|\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right|\right)=\mathbf{u} \cdot(-1,2,1)=-1-2=-3\right.$
(b) $(\mathbf{u} \cdot \mathbf{v}) \times \mathbf{w}$ does not exist
(c) $\mathbf{u} \times(\mathbf{v} \times(0,0,0))=(0,0,0)$
2. Find the equations of the line through the point $A(3,4,5)$ that is parallel to the line $x=2-t, y=-t, z=1+2 t$.
Solution. Since $(-1,-1,2)$ is parallel to the given line, it is also parallel to the line we want. So, the equations of the latter are $x=3-t, y=4-t, z=5+2 t$.
3. Find the equation of the plane that passes trough the point $A(3,4,5)$ and is perpendicular to the line $x=2, y=2 t, z=2+2 t$.

Solution. Since $(0,2,2)$ is perpendicular to the plane, it is parallel to the line we want. So, the equations of the line are $x=3, y=4+2 t, z=5+2 t$.
4. Find the point of intersection of the line $x=2, y=2 t, z=2+2 t$ and the plane $x+y+z=4$.
Solution. Substituting $x=2, y=2 t, z=2+2 t$ in the equation of the plane gives $x+2 t+2+2 t=4$ which tells us that $t=0$. So, the point of intersection is $(2,0,0)$

