B15.

136.130: Test \#3

 Solutions1. Solve the following system using Cramer's rule. No points will be awarded if other methods are used.

$$
\begin{aligned}
2 x+y & =5 \\
x-y & =1
\end{aligned}
$$

Solution. With $A=\left[\begin{array}{cc}2 & 1 \\ 1 & -1\end{array}\right], A_{1}=\left[\begin{array}{cc}5 & 1 \\ 1 & -1\end{array}\right]$ and $A_{2}=\left[\begin{array}{ll}2 & 5 \\ 1 & 1\end{array}\right]$, we have $x=\frac{\operatorname{det}\left(A_{1}\right)}{\operatorname{det}(A)}=\frac{-6}{-3}=2$ and $y=\frac{\operatorname{det}\left(A_{2}\right)}{\operatorname{det}(A)}=\frac{-3}{-3}=1$.
2. Consider the following matrix $A=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 2 & 3 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 1 & 2 & 1 & 2\end{array}\right]$. Compute the cofactor C_{23}. Show your work.

Solution. $C_{23}=(-1)^{2+3}\left|\begin{array}{lll}1 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 2 & 2\end{array}\right|=-4$
3. Suppose $\mathbf{u}=(1,2,0), \mathbf{v}=(0,0,-2)$.
(a) Compute $(2 \mathbf{u}+\mathbf{v}) \cdot \mathbf{u}$
(b) Are \mathbf{u} and \mathbf{v} perpendicular. Justify your answer.

Solution.

(a) $(2 \mathbf{u}+\mathbf{v}) \cdot \mathbf{u}=((2,4,0)+(0,0,-2)) \cdot(1,2,0)=(2,4,-2) \cdot(1,2,0)=10$
(b) Since $\mathbf{u} \cdot \mathbf{v}=0$ the two vectors are perpendicular.

