B14.

136.130: Test #2 Solutions

1. Find A^{-1} or show that the matrix A is not invertible.

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

Solution.

$$\begin{bmatrix} 1 & 1 & 0 & | 1 & 0 & 0 \\ 0 & 1 & 1 & | 0 & 1 & 0 \\ 0 & 0 & 1 & | 0 & 0 & 1 \end{bmatrix} (-1)R_3 \rightarrow R_2 \begin{bmatrix} 1 & 1 & 0 & | 1 & 0 & 0 \\ 0 & 1 & 0 & | 0 & 1 & -1 \\ 0 & 0 & 1 & | 0 & 0 & 1 \end{bmatrix} (-1)R_2 \rightarrow R_1 \begin{bmatrix} 1 & 0 & 0 & | 1 & -1 & 1 \\ 0 & 1 & 0 & | 0 & 1 & -1 \\ 0 & 0 & 1 & | 0 & 0 & 1 \end{bmatrix} .$$

So, the inverse of *A* is $\begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$.

2. Consider the following system of linear equations.

Identify the coefficient matrix and write the system in the matrix form (identify clearly the matrices you are using.).

Solution. The coefficient matrix is $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & -1 \\ 0 & 0 & 1 \end{bmatrix}$ and the system in matrix form is $A\mathbf{x} = \mathbf{b}$

where $\mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$.

3. Compute the determinants of the following matrices. (Hint: use shortcuts based on the theory covered in class.)

$$A = \begin{bmatrix} 1 & 2 & 1 & 2 \\ 2 & 3 & 2 & 3 \\ 3 & 4 & 3 & 4 \\ 4 & 5 & 4 & 6 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 2 & 7 & 0 & 7 \\ 0 & 1 & 1 & 0 & 2 \\ 1 & 0 & 2 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix} \qquad C = \begin{bmatrix} 2 & 3 & 9 \\ 0 & 8 & 1 \\ 0 & 0 & -1 \end{bmatrix}$$

Solution. det(*A*) = 0 since two columns are equal. det(*B*) = 0 since there is a 0-column. det(*C*) = (2)(8)(-1) = -16 since it is an upper triangular matrix.