B14.

136.130: Test \#2 Solutions

1. Find A^{-1} or show that the matrix A is not invertible.

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

Solution.

$\left[\begin{array}{lll|lll}1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1\end{array}\right] \xrightarrow{(-1) R_{3}} \underset{\rightarrow}{\rightarrow} R_{2}\left[\begin{array}{ccc|ccc}1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & 0 & 0 & 1\end{array}\right] \xrightarrow{(-1) R_{2} \rightarrow R_{1}} \underset{\rightarrow}{\rightarrow}\left[\begin{array}{ccc|ccc}1 & 0 & 0 & 1 & -1 & 1 \\ 0 & 1 & 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & 0 & 0 & 1\end{array}\right]$.
So, the inverse of A is $\left[\begin{array}{ccc}1 & -1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1\end{array}\right]$.
2. Consider the following system of linear equations.

$$
\begin{aligned}
x+y+z & =1 \\
2 y-z & =2 \\
z & =3
\end{aligned}
$$

Identify the coefficient matrix and write the system in the matrix form (identify clearly the matrices you are using.).

Solution. The coefficient matrix is $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 0 & 2 & -1 \\ 0 & 0 & 1\end{array}\right]$ and the system in matrix form is $A \mathbf{x}=\mathbf{b}$ where $\mathbf{x}=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$.
3. Compute the determinants of the following matrices. (Hint: use shortcuts based on the theory covered in class.)
$A=\left[\begin{array}{llll}1 & 2 & 1 & 2 \\ 2 & 3 & 2 & 3 \\ 3 & 4 & 3 & 4 \\ 4 & 5 & 4 & 6\end{array}\right] \quad B=\left[\begin{array}{lllll}1 & 0 & 1 & 0 & 1 \\ 0 & 2 & 7 & 0 & 7 \\ 0 & 1 & 1 & 0 & 2 \\ 1 & 0 & 2 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0\end{array}\right] \quad C=\left[\begin{array}{ccc}2 & 3 & 9 \\ 0 & 8 & 1 \\ 0 & 0 & -1\end{array}\right]$
Solution. $\operatorname{det}(A)=0$ since two columns are equal. $\operatorname{det}(B)=0$ since there is a 0 -column. $\operatorname{det}(C)=(2)(8)(-1)=-16$ since it is an upper triangular matrix.

