

B13.

136.130: Test #5

Solutions

[7] 1. Which of the following is a subspace of the vector space $\mathbf{M}_{2,2}$ of all 2×2 matrices (with the usual addition and scalar multiplication)? Do NOT justify your answer.

(a) All matrices of type $\begin{bmatrix} a & a \\ a & a \end{bmatrix}$ (a ranging through all real numbers).

(b) All matrices of type $\begin{bmatrix} 1 & a \\ a & 0 \end{bmatrix}$ (a ranging through all real numbers).

(c) All matrices of type $\begin{bmatrix} 0 & -a \\ a & 0 \end{bmatrix}$ (a ranging through all real numbers).

Solution. (a) Yes,
(b) No
(c) Yes.

[6] 2. (a) Is $(2, 3, 1)$ in $\text{Span}(\{(-1, 3, 1), (3, 0, 0)\})$? Justify your answer.

(b) Is $(1, 0, 0)$ in $\text{Span}(\{(0, 3, 1), (0, 1, 0)\})$? Justify your answer.

Solution. (a) Yes: $(2, 3, 1) = (-1, 3, 1) + (3, 0, 0)$
(b) No: $(1, 0, 0) \neq k_1(0, 3, 1) + k_2(0, 1, 0)$ since the first coordinates are never equal.

[6] 3. Is the set $\{(1, 0, 0), (2, 3, 0), (4, 5, 6)\}$ linearly independent? Justify your answer.

Solution. Yes. Solving $k_1(1, 0, 0) + k_2(2, 3, 0) + k_3(4, 5, 6) = 0$ gives $k_1 = k_2 = k_3 = 0$.

[6] 4. Find the point of intersection of the line $x = 2$, $y = 2t$, $z = 2 + 2t$ and the plane $x + y + z = 4$.