B13.

136.130: Test \#5 Solutions

[7] 1. Which of the following is a subspace of the vector space $\mathbf{M}_{2,2}$ of all 2×2 matrices (with the usual addition and scalar multiplication)? Do NOT justify your answer.
(a) All matrices of type $\left[\begin{array}{ll}a & a \\ a & a\end{array}\right]$ (a ranging through all real numbers).
(b) All matrices of type $\left[\begin{array}{ll}1 & a \\ a & 0\end{array}\right]$ (a ranging through all real numbers).
(c) All matrices of type $\left[\begin{array}{cc}0 & -a \\ a & 0\end{array}\right]$ (a ranging through all real numbers).

Solution. (a) Yes,
(b) No
(c) Yes.
[6] 2. (a) Is $(2,3,1)$ in $\operatorname{Span}(\{(-1,3,1),(3,0,0)\})$? Justify your answer. (b) Is $(1,0,0)$ in $\operatorname{Span}(\{(0,3,1),(0,1,0)\})$? Justify your answer.

Solution. (a) Yes: $(2,3,1)=(-1,3,1)+(3,0,0)$
(b) No: $(1,0,0) \neq k_{1}(0,3,1)+k_{2}(0,1,0)$ since the first coordinates are never equal.
[6] 3. Is the set $\{(1,0,0),(2,3,0),(4,5,6)\}$ linearly independent? Justify your answer.

Solution. Yes. Solving $k_{1}(1,0,0)+k_{2}(2,3,0)+k_{3}(4,5,6)=0$ gives $k_{1}=k_{2}=k_{3}=0$.
[6] 4. Find the point of intersection of the line $x=2, y=2 t, z=2+2 t$ and the plane $x+y+z=4$.

