B13.

136.130: Test \#1 Solutions

1. Use Gauss-Jordan elimination to solve the following system. Show your work describing your steps. State clearly your final answer.

$$
\begin{aligned}
x+y-z & =0 \\
2 y-2 z & =-2 \\
-y+z & =1
\end{aligned}
$$

Solution. Start with the augmented matrix then row reduce up to RRE form:

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & 1 & -1 & 0 \\
0 & 2 & -2 & -2 \\
0 & -1 & 1 & 1
\end{array}\right] \xrightarrow{\frac{1}{2} R_{2}}\left[\begin{array}{cccc}
1 & 1 & -1 & 0 \\
0 & 1 & -1 & -1 \\
0 & -1 & 1 & 1
\end{array}\right] \xrightarrow{R_{2} \text { to } R_{3}}\left[\begin{array}{cccc}
1 & 1 & -1 & 0 \\
0 & 1 & -1 & -1 \\
0 & 0 & 0 & 0
\end{array}\right] \xrightarrow{-R_{2} \text { to } R_{1}\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & -1 & -1 \\
0 & 0 & 0 & 0
\end{array}\right]} \begin{array}{r}
x \\
\\
=1
\end{array}} \\
& \text { The system associated to the last RRE form matrix is } \begin{aligned}
y-z & =-1 . \text { Denoting } z=t \text { we } \\
0 & =0
\end{aligned}
\end{aligned}
$$

have that $x=1, y=-1+t, z=t(t$ ranges through all numbers) is the solution of the original system.
2. Write down one inconsistent linear system with two equations and with unknowns being x and y. Do not justify your answer (just write it).

Solution: many. For example $\begin{aligned} & x+y=1 \\ & x+y=2\end{aligned}$ is one such example.
3. We are given

$$
A=\left[\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right], B=\left[\begin{array}{cc}
1 & 1 \\
0 & 1 \\
-1 & 2
\end{array}\right] \text {, and } C=\left[\begin{array}{ccc}
1 & -3 & 2 \\
1 & -1 & 0
\end{array}\right]
$$

Perform the operation if possible or indicate it is not possible.
(a) $(3 A)(2 B)$
(b) $(C B)+A$
(c) $(-2) B-C^{T}$

Solution. (a) (3A)(2B) can not be done since the sizes of $3 A$ and $2 B$ are incompatible.
(b) $(C B)+A=\left[\begin{array}{lll}1 & -3 & 2 \\ 1 & -1 & 0\end{array}\right]\left[\begin{array}{cc}1 & 1 \\ 0 & 1 \\ -1 & 2\end{array}\right]+\left[\begin{array}{cc}1 & -1 \\ 0 & 2\end{array}\right]=\left[\begin{array}{cc}-1 & 2 \\ 1 & 0\end{array}\right]+\left[\begin{array}{cc}1 & -1 \\ 0 & 2\end{array}\right]=\left[\begin{array}{cc}0 & 1 \\ 1 & 2\end{array}\right]$.
(c) $(-2) B-C^{T}=(-2)\left[\begin{array}{cc}1 & 1 \\ 0 & 1 \\ -1 & 2\end{array}\right]-\left[\begin{array}{lll}1 & -3 & 2 \\ 1 & -1 & 0\end{array}\right]^{T}=\left[\begin{array}{cc}-2 & -2 \\ 0 & -2 \\ 2 & -4\end{array}\right]-\left[\begin{array}{cc}1 & 1 \\ -3 & -1 \\ 2 & 0\end{array}\right]=\left[\begin{array}{cc}-3 & -3 \\ 3 & -1 \\ 0 & -4\end{array}\right]$.

