((a) $\quad-2((2,1,0) \cdot(3,1,4))+\|3(2,1,0)+2(1,0,-2)-(3,1,4)\|^{2}=-14+93=79$

1(b) $\mathbf{u} \times \mathbf{v}=(-2,4,-1)$
1(c) $\frac{\mathbf{u} \times \mathbf{v}}{\|\mathbf{u} \times \mathbf{v}\|}=\frac{(-2,4,-1)}{\sqrt{21}}$
$\mathbf{1}$ (d) $\quad \cos ($ angle between \mathbf{u} and $\mathbf{w})=\frac{\mathbf{u} \cdot \mathbf{w}}{\|\mathbf{u}\|\|\mathbf{w}\|}=\frac{7}{\sqrt{130}}$.
2.(a) Solve the system of all four given equations to get $(2,1,3)$ as the point of intersection.

2(b) The vector $\mathbf{v}=(1,4,-1)$ is parallel to the line we want. So its parametric equations are

$$
\begin{aligned}
& x=5+t \\
& y=0+4 t \\
& z=4-t
\end{aligned}
$$

2(c) The vector $\mathbf{n}_{\Pi}=(3,2,-1)$ is perpendicular to Π and so it must be parallel to the plane we want. Any vector \mathbf{n} perpendicular to \mathbf{n}_{Π} will give rise to a plane perpendicular to Π. We can choose \mathbf{n} by making the dot product $\mathbf{n} . \mathbf{n}_{\Pi}=0$. One solution is $\mathbf{n}=(0,1,2)$. The plane perpendicular to this $\mathbf{n}=(0,1,2)$ and passing through P is $(\mathbf{x}-(5,0,4)) \cdot(0,1,2)=0$, which in standard form becomes $y+2 z=8$. (Note again: this is not the only correct solution.)

3(a) $\quad\left[\begin{array}{ccc|c}2 & 3 & 5 & 4 \\ 4 & 7 & 13 & 6\end{array}\right]$

3(b) The RREF of the above matrix is $\left[\begin{array}{ccc|c}1 & 0 & -2 & 5 \\ 0 & 1 & 3 & -2\end{array}\right]$. After solving the associated system we get $x=5+2 t, y=-2-3 t, z=t$ where t ranges through the set of all real numbers.

4(a) The RREF of the given augmented matrix is $\left[\begin{array}{lllll|c}1 & 5 & 0 & 4 & 0 & -14 \\ 0 & 0 & 1 & 2 & 0 & -5 \\ 0 & 0 & 0 & 0 & 1 & 3\end{array}\right]$

4(b) The solution of the associated system is

$$
\begin{aligned}
& x_{1}=-14-5 t-4 s \\
& x_{2}=t \\
& x_{3}=-5-2 s \\
& x_{4}=s \\
& x_{5}=3
\end{aligned}
$$

where t and s range through the set of all real numbers.

4(c) Set $x_{2}=2$ in the above solution to get

$$
\begin{aligned}
& x_{1}=-24-4 s \\
& x_{2}=2 \\
& x_{3}=-5-2 s \\
& x_{4}=s \\
& x_{5}=3
\end{aligned}
$$

where s ranges through the set of all real numbers.

5(a) $A B+2 C=\left[\begin{array}{cc}-3 & 0 \\ 15 & 25\end{array}\right]$

5(b) $B C+C A$ is not defined because $B C$ is of size 3×2, while $C A$ is not.

5(c) $\quad C\left(A-B^{T}\right)=\left[\begin{array}{ccc}4 & 1 & -1 \\ 12 & -11 & 19\end{array}\right]$.
5(d) $\quad\left(A^{T}-B\right) C^{T}=\left[\left(A-B^{T}\right)\right]^{T} C^{T}=\left[\left(A-B^{T}\right) C\right]^{T}=\left[\begin{array}{ccc}4 & 1 & -1 \\ 12 & -11 & 19\end{array}\right]^{T}=\left[\begin{array}{cc}4 & 12 \\ 1 & -11 \\ -1 & 19\end{array}\right]$, where in the second to the last step we have used 5(c). Alternatively, do all the operations directly.

6(a) Apply row reduction to the matrix $\left[\begin{array}{ccc|ccc}1 & -2 & 1 & 1 & 0 & 0 \\ 0 & 1 & 4 & 0 & 1 & 0 \\ -1 & 2 & 0 & 0 & 0 & 1\end{array}\right]$ to get the following
RREF matrix: $\left[\begin{array}{ccc|ccc}1 & 0 & 0 & -8 & 2 & -9 \\ 0 & 1 & 0 & -4 & 1 & -4 \\ 0 & 0 & 1 & 1 & 0 & 1\end{array}\right]$. It follows that $A^{-1}=\left[\begin{array}{ccc}-8 & 2 & -9 \\ -4 & 1 & -4 \\ 1 & 0 & 1\end{array}\right]$.
6(b) $\quad A \mathbf{x}=\mathbf{b}$ is equivalent to $\mathbf{x}=A^{-1} \mathbf{b}$ and we perform the multiplication on the lefthand side to get $\mathbf{x}=\left[\begin{array}{c}-31 \\ -14 \\ 4\end{array}\right]$, or $x=-31, y=-14, z=4$.

