136.130 Midterm Brief Solutions

1(a)
$$-2((2,1,0)\cdot(3,1,4)) + ||3(2,1,0) + 2(1,0,-2) - (3,1,4)||^2 = -14 + 93 = 79$$

1(b)
$$\mathbf{u} \times \mathbf{v} = (-2, 4, -1)$$

$$\mathbf{1(c)} \qquad \frac{\mathbf{u} \times \mathbf{v}}{\|\mathbf{u} \times \mathbf{v}\|} = \frac{(-2, 4, -1)}{\sqrt{21}}$$

1(d) cos(angle between **u** and **w**) =
$$\frac{\mathbf{u} \cdot \mathbf{w}}{\|\mathbf{u}\| \|\mathbf{w}\|} = \frac{7}{\sqrt{130}}$$
.

- **2.(a)** Solve the system of all four given equations to get (2,1,3) as the point of intersection.
- **2(b)** The vector $\mathbf{v} = (1,4,-1)$ is parallel to the line we want. So its parametric equations are

$$x = 5 + t$$
$$y = 0 + 4t$$
$$z = 4 - t$$

2(c) The vector $\mathbf{n}_{\Pi} = (3,2,-1)$ is perpendicular to Π and so it must be parallel to the plane we want. Any vector \mathbf{n} perpendicular to \mathbf{n}_{Π} will give rise to a plane perpendicular to Π . We can choose \mathbf{n} by making the dot product $\mathbf{n} \cdot \mathbf{n}_{\Pi} = 0$. One solution is $\mathbf{n} = (0,1,2)$. The plane perpendicular to this $\mathbf{n} = (0,1,2)$ and passing through P is $(\mathbf{x} - (5,0,4)) \cdot (0,1,2) = 0$, which in standard form becomes y + 2z = 8. (Note again: this is not the only correct solution.)

3(a)
$$\begin{bmatrix} 2 & 3 & 5 & | 4 \\ 4 & 7 & 13 & | 6 \end{bmatrix}$$

3(b) The RREF of the above matrix is $\begin{bmatrix} 1 & 0 & -2 & 5 \\ 0 & 1 & 3 & -2 \end{bmatrix}$. After solving the associated system we get x = 5 + 2t, y = -2 - 3t, z = t where t ranges through the set of all real numbers.

4(a) The RREF of the given augmented matrix is
$$\begin{bmatrix} 1 & 5 & 0 & 4 & 0 | -14 \\ 0 & 0 & 1 & 2 & 0 | -5 \\ 0 & 0 & 0 & 0 & 1 & 3 \end{bmatrix}$$

$$x_1 = -14 - 5t - 4s$$

$$x_2 = t$$

$$x_3 = -5 - 2s$$

$$x_4 = s$$

$$x_5 = 3$$

where t and s range through the set of all real numbers.

4(c) Set
$$x_2 = 2$$
 in the above solution to get

$$x_1 = -24 - 4s$$

$$x_2 = 2$$

$$x_3 = -5 - 2s$$

$$x_4 = s$$

$$x_5 = 3$$

where s ranges through the set of all real numbers.

5(a)
$$AB + 2C = \begin{bmatrix} -3 & 0 \\ 15 & 25 \end{bmatrix}$$

5(b) BC + CA is not defined because BC is of size 3x2, while CA is not.

5(c)
$$C(A-B^T) = \begin{bmatrix} 4 & 1 & -1 \\ 12 & -11 & 19 \end{bmatrix}$$
.

5(d)
$$(A^T - B)C^T = [(A - B^T)]^T C^T = [(A - B^T)C]^T = \begin{bmatrix} 4 & 1 & -1 \\ 12 & -11 & 19 \end{bmatrix}^T = \begin{bmatrix} 4 & 12 \\ 1 & -11 \\ -1 & 19 \end{bmatrix},$$

where in the second to the last step we have used 5(c). Alternatively, do all the operations directly.

6(a) Apply row reduction to the matrix
$$\begin{bmatrix} 1 & -2 & 1 & 1 & 0 & 0 \\ 0 & 1 & 4 & 0 & 1 & 0 \\ -1 & 2 & 0 & 0 & 0 & 1 \end{bmatrix}$$
 to get the following RREF matrix:
$$\begin{bmatrix} 1 & 0 & 0 & -8 & 2 & -9 \\ 0 & 1 & 0 & -4 & 1 & -4 \\ 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}$$
. It follows that $A^{-1} = \begin{bmatrix} -8 & 2 & -9 \\ -4 & 1 & -4 \\ 1 & 0 & 1 \end{bmatrix}$.

6(b)
$$A\mathbf{x} = \mathbf{b}$$
 is equivalent to $\mathbf{x} = A^{-1}\mathbf{b}$ and we perform the multiplication on the left-hand side to get $\mathbf{x} = \begin{bmatrix} -31 \\ -14 \\ 4 \end{bmatrix}$, or $x = -31$, $y = -14$, $z = 4$.