

B05.

136.130: Test #5 Solutions

1. Suppose $\mathbf{u} = (1, 2, 3, 0, 1)$ and $\mathbf{v} = (-2, 1, 0, 1, 0)$.

- (a) Compute $2\mathbf{u} - 3\mathbf{v}$ and the distance between the points $(1, 2, 3, 0, 1)$ and $(-2, 1, 0, 1, 0)$.
- (b) Are \mathbf{u} and \mathbf{v} orthogonal? Justify your answer.

Solution. (a) $2\mathbf{u} - 3\mathbf{v} = (2, 4, 6, 0, 2) - (-6, 3, 0, 3, 0) = (8, 7, 6, 3, 2)$, and the distance between the two points is $\sqrt{(1 - (-2))^2 + (2 - 1)^2 + (3 - 0)^2 + (0 - 1)^2 + (1 - 0)^2} = \sqrt{29}$.

(b) $\mathbf{u} \cdot \mathbf{v} = (-2) + (-2) + 0 + 0 + 0 = -4$ and since this is not 0, the vectors are not orthogonal.

2. Consider the set \mathbf{W} containing only the vectors with positive components. Is \mathbf{W} a subspace of the vector space \mathbb{R}^3 ? Justify your answer.

Solution. Since $(1, 2, 3)$ is in \mathbf{W} , yet $(-2)(1, 2, 3) = (-2, -4, -6)$ is obviously not in \mathbf{W} , the set \mathbf{W} is not closed under scalar multiplication, and so it is not a subspace of \mathbb{R}^3 .

3. Show that the set $\{(1, 0), (0, 1)\}$ of vectors in \mathbb{R}^2 spans all of \mathbb{R}^2 .

Solution. Take any (a, b) in \mathbb{R}^2 . Then it is easy to see that $(a, b) = a(1, 0) + b(0, 1)$ and so each vector in \mathbb{R}^2 is a linear combination of the vectors in $\{(1, 0), (0, 1)\}$. So, the set $\{(1, 0), (0, 1)\}$ spans \mathbb{R}^2 .