1. Suppose $\mathbf{u} = (1, 2, 3, 0, 1)$ and $\mathbf{v} = (2, 1, 0, 1, 0)$.

- (a) Compute $2\mathbf{u}$ $3\mathbf{v}$ and the distance between the points (1, 2, 3, 0, 1) and (2,1,0,1,0).
- (b) Are **u** and **v** orthogonal? Justify your answer.

Solution. (a) 2u $3\mathbf{v}=(2, 4, 6, 0, 2)$ ($6, 3, 0, 3 \neq 0$) (8, 7, 6, 3, 2), and the distance between the twp points is $\sqrt{(1 (2))^2 + (2 + 9)^2 (3 + 9)^2 (0 + 1)^2 (1 = 0)^2} \sqrt{29}$.

(b) $\mathbf{u} \diamond \mathbf{v} = (2) + (2) + 0 + 0 + 0 = 4$ and since this is not 0, the vectors are not orthogonal.

2. Consider the set **W** containing only the vectors with positive components. Is **W** is a subspace of the vector space \mathbb{R}^3 ? Justify your answer.

Solution. Since (1,2,3) is in W, yet (-2)(1,2,3)=(-2,-4,-6) is obviously not in W, the set W is not closed under scalar multiplication, and so it is not a subspace of \mathbb{R}^3 .

3. Show that the set $\{(1,0),(0, 1)\}$ of vectors in \mathbb{R}^2 spans all of \mathbb{R}^2 .

Solution. Take any (a,b) in \mathbb{R}^2 . Then it is easy to see that (a,b) = a(1,0) + (b)(0, 1) and so each vector in \mathbb{R}^2 is a linear combination of the vectors in $\{(1,0), (0, 1)\}$. So, the set $\{(1,0), (0, 1)\}$ spans \mathbb{R}^2 .