B05. 136.130: Test \#5 Solutions

1. Suppose $\mathbf{u}=(1,2,3,0,1)$ and $\mathbf{v}=(2,1,0,1,0)$.
(a) Compute $2 \mathbf{u} \quad 3 \mathbf{v}$ and the distance between the points $(1,2,3,0,1)$ and (2,1,0,1,0).
(b) Are \mathbf{u} and \mathbf{v} orthogonal? Justify your answer.

Solution. (a) $2 \mathbf{u} \quad 3 \neq(2,4,6,0,2)(6,3, \#, 3,0) \quad(8,7,6,3,2)$, and the distance between the twp points is $\sqrt{\left(1 \quad(2) 丹^{2}\right.}\left(\begin{array}{lllll}2+1)^{2} & (3 & 0\end{array}\right)^{2}+\left(\begin{array}{lll}1 & 1\end{array}\right)^{2}=\left(\begin{array}{ll}1 & 0\end{array}\right)^{2} \quad \sqrt{29}$.
(b) $\mathbf{u} \delta \mathbf{v}=(2+(2)+0+0+0=4$ and since this is not 0 , the vectors are not orthogonal.
2. Consider the set \mathbf{W} containing only the vectors with positive components. Is \mathbf{W} is a subspace of the vector space \mathbf{R}^{3} ? Justify your answer.

Solution. Since $(1,2,3)$ is in \mathbf{W}, yet $(-2)(1,2,3)=(-2,-4,-6)$ is obviously not in \mathbf{W}, the set \mathbf{W} is not closed under scalar multiplication, and so it is not a subspace of \mathbf{R}^{3}.
3. Show that the set $\{(1,0),(0,1)\}$ of vectors in \mathbf{R}^{2} spans all of \mathbf{R}^{2}.

Solution. Take any (a, b) in \mathbf{R}^{2}. Then it is easy to see that $(a, b)=a(1,0)+(b)(0,1)$ and so each vector in \mathbb{R}^{2} is a linear combination of the vectors in $\{(1,0),(0,1)\}$. So, the set $\{(1,0),(0,1)\}$ spans \mathbb{R}^{2}.

