

B01.

136.130: Test #5 Solutions

1. Suppose $\mathbf{u} = (1, -2, 3, 0, 1)$ and $\mathbf{v} = (-2, 1, 0, 1, 0)$.

- (a) Compute $2\mathbf{u} - 3\mathbf{v}$ and $\|\mathbf{u}\|$.
- (b) Are \mathbf{u} and \mathbf{v} orthogonal? Justify your answer.

Solution. (a) $2\mathbf{u} - 3\mathbf{v} = (2, -4, 6, 0, 2) - (-6, 3, 0, 3, 0) = (8, -7, 6, 3, 2)$, and $\|\mathbf{u}\| = \sqrt{1^2 + (-2)^2 + 3^2 + 0^2 + 1^2} = \sqrt{15}$.

(b) $\mathbf{u} \diamond \mathbf{v} = (-2) + (-2) + 0 + 0 + 0 = -4$ and since this is not 0, the vectors are not orthogonal.

2. Consider the set \mathbf{W} containing only the vectors $(0,0,0)$ and $(1,2,3)$. Is \mathbf{W} a subspace of the vector space \mathbb{R}^3 ? Justify your answer.

Solution. Since, say, $(1,2,3) + (1,2,3) = (2,4,6)$ is obviously not in \mathbf{W} , the set \mathbf{W} is not closed under addition, and so it is not a subspace of \mathbb{R}^3 .

3. Show that the set $\{(1,2,0), (-1,0,1), (0,2,1)\}$ of vectors in \mathbb{R}^3 is linearly dependent.

Solution. Notice that the third vector is the sum of the first two. So, the set is indeed linearly dependent.