136.130: Test \#5 Solutions

1. Suppose $\mathbf{u}=(1,2,3,0,1)$ and $\mathbf{v}=(2,1,0,1,0)$.
(a) Compute $2 \mathbf{u} \quad 3 \mathbf{v}$ and $\|\mathbf{u}\|$.
(b) Are \mathbf{u} and \mathbf{v} orthogonal? Justify your answer.

Solution. (a) $2 \mathbf{u} \quad 3 \neq(2,4,6,0,2)(6,3, \#, 3,0) \quad(8,7,6,3,2)$, and $\|\mathbf{u}\|=\sqrt{1^{2}+(2)^{2}+3^{2}+0^{2}+(1)^{2}}=\sqrt{15}$.
(b) $\mathbf{u}\langle\mathbf{v}=(2+(2)+0+0+0=4$ and since this is not 0 , the vectors are not orthogonal.
2. Consider the set \mathbf{W} containing only the vectors $(0,0,0)$ and $(1,2,3)$. Is \mathbf{W} is a subspace of the vector space \mathbb{R}^{3} ? Justify your answer.

Solution. Since, say, $(1,2,3)+(1,2,3)=(2,4,6)$ is obviously not in \mathbf{W}, the set \mathbf{W} is not closed under addition, and so it is not a subspace of \mathbb{R}^{3}.
3. Show that the set $\{(1,2,0),(1,0,1),(0,2,1)\}$ of vectors in \mathbf{R}^{3} is linearly dependent.

Solution. Notice that the third vector is the sum of the first two. So, the set is indeed linearly dependent.

