

THE UNIVERSITY OF MANITOBA

DATE: October 28, 2002

MIDTERM EXAMINATION

PAGE 1 of 6

DEPARTMENT & COURSE NO: 136.130

TIME: 1 hour

EXAMINATION: Vector Geometry & Linear Algebra

EXAMINERS: Various

Values

[10] 1. Consider the following system of equations:

$$\begin{aligned} 2x + 4y + z &= 11 \\ x + 2y + 2z &= 13 \\ 3x + 6y + 3z &= 24 \end{aligned}$$

(a) Write down the augmented matrix for this system.

$$\begin{array}{ccc|c} 2 & 4 & 1 & 11 \\ 1 & 2 & 2 & 13 \\ 3 & 6 & 3 & 24 \end{array}$$

(b) Find the reduced row-echelon form of this matrix.

Row reduce $\begin{array}{ccc|c} 2 & 4 & 1 & 11 \\ 1 & 2 & 2 & 13 \\ 3 & 6 & 3 & 24 \end{array}$ to get $\begin{array}{ccc|c} 1 & 2 & 0 & 3 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 \end{array}$.

(c) Solve the system; present your answer in parametric form.

The system associated to the last augmented matrix above is

$$\begin{aligned} x + 2y &= 3 \\ z &= 5 \\ 0 &= 0 \end{aligned}$$

Choose $y=t$ to get the solution in the parametric form: $x=-2t+3$, $y=t$, $z=5$.

THE UNIVERSITY OF MANITOBA

DATE: October 28, 2002

MIDTERM EXAMINATION

PAGE 2 of 6

DEPARTMENT & COURSE NO: 136.130

TIME: 1 hour

EXAMINATION: Vector Geometry & Linear Algebra

EXAMINERS: Various

Values

[10] 2. (a) Let $A = \begin{pmatrix} 1 & 4 & 3 \\ 2 & 1 & 5 \end{pmatrix}$, $B = \begin{pmatrix} 2 & 3 & 6 \\ 1 & 1 & 3 \\ 1 & 2 & 2 \end{pmatrix}$, $C = \begin{pmatrix} 10 & 4 \\ 1 & 1 \\ 2 & 0 \end{pmatrix}$

Find, if possible, $A(B - B^T)$, $B(A^T + C)$, $(A^T + C)B$, $B(A + C^T)$ and $(A + C^T)B^T$.

1. $A(B - B^T) = \begin{pmatrix} 7 & 1 & 1 \\ 23 & 9 & 11 \end{pmatrix} \cdot \begin{pmatrix} 7 & 26 \\ 7 & 26 \end{pmatrix}$

2. $B(A^T + C) = \begin{pmatrix} 31 & 17 \\ 9 & 8 \end{pmatrix} \cdot \begin{pmatrix} 7 & 26 \\ 31 & 17 \end{pmatrix}$

3. $(A^T + C)B$ is not doable.

4. $B(A + C^T)$ is not doable.

5. Note that $(A + C^T)B^T$ is the transpose of $B(A^T + C)$. So,

$$(A + C^T)B^T = [B(A^T + C)]^T = \begin{pmatrix} 7 & 26 \\ 31 & 17 \\ 9 & 8 \end{pmatrix}^T = \begin{pmatrix} 7 & 31 & 9 \\ 26 & 17 & 8 \end{pmatrix}.$$

(b) Let A be a 2×3 matrix, C a 4×5 matrix, and suppose that $M = ABC$.

What are the sizes of the matrices M and B ?

Since A is 2×3 and C is 4×5 , it follows that B is 3×4 and that M is 2×5 .

THE UNIVERSITY OF MANITOBA

DATE: October 28, 2002

MIDTERM EXAMINATION

PAGE 3 of 6

DEPARTMENT & COURSE NO: 136.130

TIME: 1 hour

EXAMINATION: Vector Geometry & Linear Algebra

EXAMINERS: Various

Values

[10] 3. Let $A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 2 & 3 \\ 2 & 1 & 2 \end{pmatrix}$.

(a) Find A^{-1} .

Use row reduction or $\text{Adj}A$ to get that $A^{-1} = \begin{pmatrix} 1 & 1 & 2 \\ 2 & 0 & 1 \\ 2 & 1 & 2 \end{pmatrix}$.

(b) Use your answer in (a) to solve the system $A \begin{pmatrix} p \\ q \\ r \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}$.

(Full marks will not be awarded for solutions that do not use (a)).

$$\begin{array}{rcccccc} p & 1 & 1 & 2 & 3 & 9 \\ q = & 2 & 0 & 1 & 2 & = & 10 \\ r & 2 & 1 & 2 & 4 & & 12 \end{array}$$

THE UNIVERSITY OF MANITOBA

DATE: October 28, 2002

MIDTERM EXAMINATION

PAGE 4 of 6

DEPARTMENT & COURSE NO: 136.130

TIME: 1 hour

EXAMINATION: Vector Geometry & Linear Algebra

EXAMINERS: Various

Values

[10] 4. (a) Which of the following matrices are elementary matrices:

$$A = \begin{matrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{matrix}, \quad B = \begin{matrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{matrix}, \quad C = \begin{matrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{matrix},$$

$$D = \begin{matrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{matrix}, \quad E = \begin{matrix} 1 & 0 \\ 0 & 1 \end{matrix}, \quad F = \begin{matrix} 1 & 0 & 0 & 0 & 2 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{matrix}.$$

B, C and E are elementary; the other matrices are not elementary.

(b) Let $C = \begin{matrix} 1 & 2 \\ 4 & 7 \end{matrix}$. Write C as a product of elementary matrices.

Row reduce: $\begin{matrix} 1 & 2 \\ 4 & 7 \end{matrix} \xrightarrow{(4)(1st) \text{ to } 2nd} \begin{matrix} 1 & 2 \\ 0 & 1 \end{matrix} \xrightarrow{(-1)1st} \begin{matrix} 1 & 2 \\ 0 & 1 \end{matrix} \xrightarrow{(2)2nd \text{ to } 1st} \begin{matrix} 1 & 0 \\ 0 & 1 \end{matrix}$. The first matrix is C, the last is the identity. Call the second matrix A_1 . The third matrix is already elementary; call it E_1 . Note that we can get A_1 from E_1 by multiplying the 1st row by -1. So,

$A_1 = E_2 \begin{matrix} 1 & 2 \\ 0 & 1 \end{matrix}$, where we get E_2 by multiplying the first row of I by -1; so $E_2 = \begin{matrix} 1 & 0 \\ 0 & 1 \end{matrix}$.

Further, we can get C from A_1 by multiplying the 1st row by (-4) and adding that to the second row. So, $C = E_3 A_1$, where we get E_3 by multiplying the 1st row of I by (-4) and adding that to the

second row; so $E_3 = \begin{matrix} 1 & 0 \\ 4 & 1 \end{matrix}$. Summarizing: $C = E_3 A_1 = E_3 E_2 E_1 = \begin{matrix} 1 & 0 & 1 & 0 & 1 & 2 \\ 4 & 1 & 0 & 1 & 0 & 1 \end{matrix}$

Note: this is NOT the only correct answer.

THE UNIVERSITY OF MANITOBA

DATE: October 28, 2002

MIDTERM EXAMINATION

PAGE 5 of 6

DEPARTMENT & COURSE NO: 136.130

TIME: 1 hour

EXAMINATION: Vector Geometry & Linear Algebra

EXAMINERS: Various

Values

[10] 5. (a) Compute $\begin{vmatrix} 1 & 2 & 1 \\ 3 & 6 & 5 \\ 2 & 1 & 3 \end{vmatrix}$ by using row operations to put the matrix in upper-triangular form. (Full marks will not be awarded for any other method.)

Start with $\begin{matrix} 1 & 2 & 1 \\ 3 & 6 & 5 \\ 2 & 1 & 3 \end{matrix}$ and row reduce a bit: $\begin{matrix} 1 & 2 & 1 \\ 3 & 6 & 5 \\ 2 & 1 & 3 \end{matrix} \xrightarrow{(-3)\text{1st to 2nd and } (-2)\text{1st to 3rd}} \begin{matrix} 1 & 2 & 1 \\ 0 & 0 & 2 \\ 0 & 5 & 1 \end{matrix}$. Note

that the two row operations we have applied so far do not affect the determinant. One more step:

$\begin{matrix} 1 & 2 & 1 \\ 0 & 0 & 2 \\ 0 & 5 & 1 \end{matrix} \xrightarrow{\text{switch 2nd and 3rd}} \begin{matrix} 1 & 2 & 1 \\ 0 & 5 & 1 \\ 0 & 0 & 2 \end{matrix}$. This row operation affect the determinant by a factor of

$$1 \quad 2 \quad 1$$

-1 . So the determinant we want is $(-1)\det \begin{matrix} 1 & 2 & 1 \\ 0 & 5 & 1 \\ 0 & 0 & 2 \end{matrix}$. But since this matrix is triangular, we have

$$(-1)\det \begin{matrix} 1 & 2 & 1 \\ 0 & 5 & 1 \\ 0 & 0 & 2 \end{matrix} = (-1)(1)(-5)(2) \neq 10.$$

(b) Given that $\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = 7$, find $\begin{vmatrix} 2a & b & c \\ 2(a+d) & b+e & c+f \\ 2(3g+a) & 3h+b & 3i+c \end{vmatrix}$.

$$\begin{aligned} \begin{vmatrix} 2a & b & c \\ 2(a+d) & b+e & c+f \\ 2(3g+a) & 3h+b & 3i+c \end{vmatrix} &= 2 \begin{vmatrix} a & b & c \\ (a+d) & b+e & c+f \\ (3g+a) & 3h+b & 3i+c \end{vmatrix} = 2 \begin{vmatrix} a & b & c \\ d & e & f \\ (3g+a) & 3h+b & 3i+c \end{vmatrix} = \\ &= 2 \begin{vmatrix} a & b & c \\ d & e & f \\ 3g & 3h & 3i \end{vmatrix} = (2)(3) \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = (6)(7) = 42 \end{aligned}$$

(c) A, B, C are 4×4 matrices with determinants $\det A = 2$, $\det B = 3$ and $\det C = 5$. Find $\det(3A^2B^tC^{-1})$.

$$\det(3A^2B^tC^{-1}) = (-3)^4 [\det(A)]^2 (\det B^t) (\det C^{-1}) = (-3)^4 (2)^2 (3)(1/5).$$

THE UNIVERSITY OF MANITOBA

DATE: October 28, 2002

MIDTERM EXAMINATION

PAGE 6 of 6

DEPARTMENT & COURSE NO: 136.130

TIME: 1 hour

EXAMINATION: Vector Geometry & Linear Algebra

EXAMINERS: Various

Values

[10] 6. (a) Use Cramer's rule to find the value of x_3 in the system:

$$\begin{array}{rcl} 3x_1 & + & x_3 = 2 \\ 4x_1 + 2x_2 + 4x_3 = 4 \\ x_2 & - & x_3 = 0 \end{array}$$

$$\begin{array}{ccc} 3 & 0 & 1 \end{array}$$

The coefficient matrix is $A = \begin{array}{ccc} 3 & 0 & 1 \\ 4 & 2 & 4 \\ 0 & 1 & 1 \end{array}$ and $\det A = 14$. The matrix A_3 we need to solve for x_3

is $A_3 = \begin{array}{ccc} 3 & 0 & 2 \\ 4 & 2 & 4 \\ 0 & 1 & 0 \end{array}$, and it has the determinant of -4 . So, $x_3 = \frac{\det A_3}{\det A} = \frac{4}{14} = \frac{2}{7}$.

$$(b) \text{ Suppose } A = \begin{array}{ccc} 1 & 0 & a \\ 2 & 2 & 3 \\ 1 & 1 & 2 \end{array} \text{ and } \text{Adj } A = \begin{array}{ccc} 1 & 1 & 2 \\ 1 & 1 & 1 \\ 0 & b & c \end{array}.$$

Find the values of a , b , and c , and use $\text{Adj } A$ to find A^{-1}

We read from $\text{Adj } A$ that the cofactor $C_{2,2}$ is 1. On the other hand, we see from the matrix A that $C_{2,2} = (-1)^{2+2} \begin{vmatrix} 1 & a \\ 1 & 2 \end{vmatrix}$. So, $1 = (-1)^{2+2} \begin{vmatrix} 1 & a \\ 1 & 2 \end{vmatrix}$, from where we find $a = 1$.

Notice that $b = C_{2,3}$. We then compute $C_{2,3}$ from the matrix A to get that $b = 1$. Finally, notice that $c = C_{3,3}$ and we find from A that $c = -2$.

Now that we know a we compute $\det A = 1$. Since $A^{-1} = \frac{1}{\det A} \text{Adj } A$, we have

$$A^{-1} = \frac{1}{1} \begin{array}{ccc} 1 & 1 & 2 \\ 1 & 1 & 1 \\ 0 & 1 & 2 \end{array}.$$