THE UNIVERSITY OF MANITOBA

DATE: October 28, 2002
MIDTERM EXAMINATION

PAGE 1 of 6

TIME: 1 hour
DEPARTMENT \& COURSE NO: 136.130

EXAMINATION: Vector Geometry \& Linear Algebra EXAMINERS: Various

Values

[10] 1. Consider the following system of equations:

$$
\begin{array}{r}
2 x+4 y+z=11 \\
x+2 y+2 z=13 \\
3 x+6 y+3 z=24
\end{array}
$$

(a) Write down the augmented matrix for this system.

2	4	1	11
1	2	2	13
3	6	3	24

(b) Find the reduced row-echelon form of this matrix.

	2	4	1	11		1	2	0	3
Row reduce	1	2	2	13					
	to get	0	0	1	5				
	6	6	3	24		0	0	0	0

(c) Solve the system; present your answer in parametric form.

The system associated to the last augmented matrix above is

$$
\begin{array}{rcc}
x+2 y & & =3 \\
& z & =5 \\
& 0 & =0
\end{array}
$$

Choose $y=t$ to get the solution in the parametric form: $\mathrm{x}=-2 \mathrm{t}+3, \mathrm{y}=\mathrm{t}, \mathrm{z}=5$.

THE UNIVERSITY OF MANITOBA

DATE: October 28, 2002
MIDTERM EXAMINATION
PAGE 2 of 6

TIME: 1 hour
EXAMINERS: Various

Values

Find, if possible, $A\left(B B^{T}\right), B\left(A^{T}+C\right),\left(A^{T}+C\right) B, B\left(A+C^{T}\right)$ and $\left(A+C^{T}\right) B^{T}$.

1. $A\left(\begin{array}{ll}B & B^{T}\end{array}\right)=\begin{array}{ccc}7 & 1 & 1 \\ 23 & 9 & 11\end{array}$.

726
2. $B\left(A^{T}+C\right)=31 \quad 17$.

98
3. $\left(A^{T}+C\right) B$ is not doable.
4. $\mathrm{B}\left(\mathrm{A}+\mathrm{C}^{\mathrm{T}}\right)$ is not doable.
5. Note that $\left(A+C^{T}\right) B^{T}$ is the transpose of $B\left(A^{T}+C\right)$. So,
$\left(A+C^{T}\right) B^{T}=\left[B\left(A^{T}+C\right)\right]^{T}=\begin{array}{cc}7 & 26^{T} \\ 31 & 17 \\ 9 & 8\end{array}=\begin{array}{ccc}7 & 31 & 9 \\ 26 & 17 & 8\end{array}$.
(b) Let A be a 23 matrix, C a 45 matrix, and suppose that $\mathrm{M}=\mathrm{ABC}$. What are the sizes of the matrices M and B ?

Since A is 2×3 and C is 4×5, it follows that B is 3×4 and that M is 2×5.

THE UNIVERSITY OF MANITOBA

MIDTERM EXAMINATION

PAGE 3 of 6

TIME: 1 hour
EXAMINERS: Various

Values

(b) Use your answer in (a) to solve the system A q = 2
(Full marks will not be awarded for solutions that do not use (a)).

p	1	1	2	3	9
q	2	0	1	2	10
r	2	1	2	4	2

THE UNIVERSITY OF MANITOBA

EXAMINATION: Vector Geometry \& Linear Algebra EXAMINERS: Various

MIDTERM EXAMINATION
PAGE 4 of 6

TIME: 1 hour

Values

[10] 4. (a) Which of the following matrices are elementary matrices:

$$
\begin{aligned}
& \mathrm{A}=\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}, \quad \mathrm{~B}=\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array} . \quad \mathrm{C}=\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}, \\
& \mathrm{D}=\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}, \quad \mathrm{E}=\begin{array}{l}
1 \\
0 \\
0
\end{array} 1 . \quad \mathrm{F}=\begin{array}{ccccc}
1 & 0 & 0 & 0 & 2 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array} \text {. }
\end{aligned}
$$

B, C and E are elementary; the other matrices are not elementary.
(b) Let $\mathrm{C}=\begin{array}{ll}1 & 2 \\ 4 & 7\end{array}$. Write C as a product of elementary matrices.

matrix is C , the last is the identity. Call the second matrix A_{1}. The third matrix is already elementary; call it E_{1}. Note that we can get A_{1} from E_{1} by multiplying the $1^{\text {st }}$ row by -1 . So, $A_{1}=E_{2} \begin{array}{ll}1 & 2 \\ 0 & 1\end{array}$, where we get E_{2} by multiplying the first row of I by -1 ; so $E_{2}=\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}$.
Further, we can get C from A_{1} by multiplying the $1^{\text {st }}$ row by (-4) and adding that to the second row. So, $C=E_{3} A_{1}$, where we get E_{3} by multiplying the $1^{\text {st }}$ row of I by (-4) and adding that to the second row; so $E_{3}=\begin{array}{cc}1 & 0 \\ 4 & 1\end{array}$. Summarizing: $C=E_{3} A_{1}=E_{3} E_{2} E_{1}=\begin{array}{cccccc}1 & 0 & 1 & 0 & 1 & 2 \\ 4 & 1 & 0 & 1 & 0 & 1\end{array}$

Note: this is NOT the only correct answer.

MIDTERM EXAMINATION
PAGE 5 of 6
TIME: 1 hour

EXAMINERS: Various

Values

[10] 5. (a) Compute $\left|\begin{array}{lll}1 & 2 & 1 \\ 3 & 6 & 5 \\ 2 & 1 & 3\end{array}\right|$ by using row operations to put the matrix in upper-
triangular form. (Full marks will not be awarded for any other method.)

that the two row operations we have applied so far do not affect the determinant. One more step:

1	2	1		1 switch 2nd and 3rd	2	1
0	0	2	5	1		
0	5	1				

| 0 | 5 | 1 | 0 |
| :--- | :--- | :--- | :--- | 0

121
-1 . So the determinant we want is (1) det $0 \quad 5 \quad 1$. But since this matrix is triangular, we have $0 \quad 0 \quad 2$

```
(1)\operatorname{det}\begin{array}{lll}{1}&{2}&{1}\\{0}&{5}&{1}\end{array}=(1)(1)(5)(#)}10
    0}
```

(b) Given that $\left|\begin{array}{lll}\mathrm{a} & \mathrm{b} & \mathrm{c} \\ \mathrm{d} & \mathrm{e} & \mathrm{f} \\ \mathrm{g} & \mathrm{h} & \mathrm{i}\end{array}\right|=7$, find $\left|\begin{array}{ccc}2 \mathrm{a} & \mathrm{b} & \mathrm{c} \\ 2(\mathrm{a}+\mathrm{d}) & \mathrm{b}+\mathrm{e} & \mathrm{c}+\mathrm{f} \\ 2(3 \mathrm{~g}+\mathrm{a}) & 3 \mathrm{~h}+\mathrm{b} & 3 \mathrm{i}+\mathrm{c}\end{array}\right|$.

$$
\begin{aligned}
& \left|\begin{array}{ccc}
2 a & b & c \\
2(a+d) & b+e & c+f \\
2(3 g+a) & 3 h+b & 3 i+c
\end{array}\right|=2\left|\begin{array}{ccc}
a & b & c \\
(a+d) & b+e & c+f \\
(3 g+a) & 3 h+b & 3 i+c
\end{array}\right|=2\left|\begin{array}{ccc}
a & b & c \\
d & e & f \\
(3 g+a) & 3 h+b & 3 i+c
\end{array}\right|= \\
& =2\left|\begin{array}{ccc}
a & b & c \\
d & e & f \\
3 g & 3 h & 3 i
\end{array}\right|=(2)(3)\left|\begin{array}{ccc}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right|=(6)(7)=42
\end{aligned}
$$

(c) $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are 44 matrices with determinants $\operatorname{det} \mathrm{A}=2, \operatorname{det} \mathrm{~B}=3$ and $\operatorname{det} C=5$. Find $\operatorname{det}\left(3 A^{2} B^{t} C^{1}\right)$.
$\operatorname{det}\left(3 A^{2} B^{t} C^{1}\right)=(3)^{4}[\operatorname{det}(A)]^{2}\left(\operatorname{det} B^{T}\right)\left(\operatorname{det} C^{1} \neq(3)^{4}(2)^{2}(3)(1 / 5)\right.$.

THE UNIVERSITY OF MANITOBA

MIDTERM EXAMINATION

PAGE 6 of 6

TIME: 1 hour
EXAMINERS: Various

Values

[10] 6. (a) Use Cramer's rule to find the value of x_{3} in the system:

$$
\begin{aligned}
3 x_{1}+x_{3} & =2 \\
4 x_{1}+2 x_{2}+4 x_{3} & =4 \\
x_{2} & x_{3}=
\end{aligned}
$$

$\begin{array}{lll}3 & 0 & 1\end{array}$
The coefficient matrix is $A=4 \quad 2 \quad 4$ and $\operatorname{det} A=14$. The matrix A_{3} we need to solve for x_{3} 011
is $A_{3}=\begin{array}{lll}3 & 0 & 2 \\ 4 & 2 & 4 \\ 0 & 1 & 0\end{array}$, and it has the determinant of -4. So, $x_{3}=\frac{\operatorname{det} A_{3}}{\operatorname{det} A}=\frac{4}{14}=\frac{2}{7}$.
(b) Suppose $A=\begin{array}{ccc}1 & 0 & a \\ 2 & 2 & 3 \\ 1 & 1 & 2\end{array}$ and $\operatorname{Adj} A=\begin{array}{ccc}1 & 1 & 2 \\ 1 & 1 & 1 . \\ 0 & b & c\end{array}$.

Find the values of a, b, and c, and use $\operatorname{Adj} A$ to find $A{ }^{1}$

We read from AdjA that the cofactor $C_{2,2}$ is 1 . On the other hand, we see from the matrix A that $C_{2,2}=(1)^{2+2}\left|\begin{array}{ll}1 & a \\ 1 & 2\end{array}\right|$. So, $1=(1)^{2+2}\left|\begin{array}{ll}1 & a \\ 1 & 2\end{array}\right|$, from where we find $a=1$.

Notice that $b=C_{2,3}$. We then compute $C_{2,3}$ from the matrix A to get that $b=1$.
Finally, notice that $c=C_{3,3}$ and we find from A that $c=-2$.
Now that we know a we compute $\operatorname{det} A=1$. Since $A^{1}=\frac{1}{\operatorname{det} A} \operatorname{Adj} A$, we have
$A^{1}=\frac{1}{1} \begin{array}{ccc}1 & 1 & 2 \\ 1 & 1 & 1 \\ 0 & 1 & 2\end{array}$.

