[10]     1.         Consider the following system of equations:

 

 

                                               

 

                        (a)        Write down the augmented matrix for this system.

 

 

 

 

 

 

 

 

 

 

 

 

                        (b)       Find the reduced row-echelon form of this matrix.

 

 

 

 

Row reduce  to get .

 

 

 

 

 

 

 

                        (c)        Solve the system; present your answer in parametric form.

 

 

The system associated to the last augmented matrix above is

 

 

Choose y=t to get the solution in the parametric form: x=-2t+3, y=t, z=5.


[10]     2.         (a)        Let  ,   ,  

 

Find, if possible,  ,  ,  ,    and  .

 

 

1. .

2. .

3.  is not doable.

4.  is not doable.

5. Note that  is the transpose of . So, .

 

 

 

 

 

 

 

 

 

 

 

                        (b)       Let  A  be a   matrix,  C  a    matrix, and suppose that  . 

 

                                    What are the sizes of the matrices M  and  B?

 

 

Since A is 2x3 and C is 4x5, it follows that B is 3x4 and that M is 2x5.

 

 

 

 

 

 

 


[10]     3.         Let  .

 

                        (a)        Find  .

 

 

Use row reduction or AdjA to get that .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                        (b)       Use your answer in (a) to solve the system  .

                                    (Full marks will not be awarded for solutions that do not use (a)).

                                   

 

 


[10]     4.         (a)        Which of the following matrices are elementary matrices:

 

                                    ,  .  , 

 

 

                                    ,  ,  .

 

 

B, C and E are elementary; the other matrices are not elementary.

 

 

 

 

 

 

 

 

 

 

                      (b)       Let  .  Write  C  as a product of elementary matrices.

 

 

Row reduce: . The first matrix is C, the last is the identity. Call the second matrix . The third matrix is already elementary; call it . Note that we can get  from  by multiplying the 1st row by –1. So, , where we get  by multiplying the first row of I by –1; so . Further, we can get C from  by multiplying the 1st row by (-4) and adding that to the second row. So, , where we get  by multiplying the 1st row of I by (-4) and adding that to the second row; so . Summarizing:

 

Note: this is NOT the only correct answer.

.

 

 

 

 

 

[10]     5.         (a)        Compute    by using row operations to put the matrix in upper-

                                    triangular form.  (Full marks will not be awarded for any other method.)

 

 

Start with  and row reduce a bit: . Note that the two row operations we have applied so far do not affect the determinant. One more step:

. This row operation affect the determinant by a factor of –1. So the determinant we want is . But since this matrix is triangular, we have .

 

                        (b)       Given that  ,  find  .

 

 

 

 

(c)        A,  B,  C  are    matrices with determinants  ,    and 

                                    .  Find  .

 

.


[10]                 6.         (a)        Use Cramer’s rule to find the value of    in the system:

 

                                                           

 

The coefficient matrix is  and  The matrix  we need to solve for  is , and it has the determinant of –4. So, .

 

 

 

 

 

 

 

                                    (b)       Suppose    and  .

 

            Find the values of  a, b,  and c,  and use Adj A to find 

 

 

 

We read from AdjA that the cofactor  is 1. On the other hand, we see from the matrix A that . So, , from where we find .

 

Notice that . We then compute  from the matrix A to get that b=1.

Finally, notice that  and we find from A that c=-2.

 

Now that we know a we compute . Since , we have  .