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7.1
EIGENVALUES
AND
EIGENVECTORS

In Section 2.3 we introduced the concepts of eigenvalue and eigenvector.
In this section we will study those ideas in more detail to set the stage for
applications of them in later sections.

Review We begin with a review of some concepts that were mentioned in Sections 2.3 and 4.3.

D E F I N I T I O N

If A is an n× n matrix, then a nonzero vector x in Rn is called an eigenvector of A

if Ax is a scalar multiple of x; that is, if

Ax = λx

for some scalar λ. The scalar λ is called an eigenvalue of A, and x is said to be an

eigenvector of A corresponding to λ.

In R2 and R3, multiplication by A maps each eigenvector x of A (if any) onto the

same line through the origin as x. Depending on the sign and the magnitude of the

eigenvalue λ corresponding to x, the linear operator Ax = λx compresses or stretches x

by a factor of λ, with a reversal of direction in the case where λ is negative (Figure 7.1.1).
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Figure 7.1.1

EXAMPLE 1 Eigenvector of a 2 × 2 Matrix

The vector x =
[

1

2

]

is an eigenvector of

A =
[

3 0

8 −1

]

corresponding to the eigenvalue λ = 3, since

Ax =
[

3 0

8 −1

] [

1

2

]

=
[

3

6

]

= 3x �

To find the eigenvalues of an n× n matrix A, we rewrite Ax = λx as

Ax = λIx
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or, equivalently,

(λI − A)x = 0 (1)

For λ to be an eigenvalue, there must be a nonzero solution of this equation. By

Theorem 6.4.5, Equation (1) has a nonzero solution if and only if

det(λI − A) = 0

This is called the characteristic equation ofA; the scalars satisfying this equation are the

eigenvalues ofA. When expanded, the determinant det(λI − A) is always a polynomial

p in λ, called the characteristic polynomial of A.

It can be shown (Exercise 15) that if A is an n× n matrix, then the characteristic

polynomial of A has degree n and the coefficient of λn is 1; that is, the characteristic

polynomial p(λ) of an n× n matrix has the form

p(λ) = det(λI − A) = λn + c1λ
n−1 + · · · + cn

It follows from the Fundamental Theorem of Algebra that the characteristic equation

λn + c1λ
n−1 + · · · + cn = 0

has at most n distinct solutions, so an n× n matrix has at most n distinct eigenvalues.

The reader may wish to review Example 6 of Section 2.3, where we found the

eigenvalues of a 2 × 2 matrix by solving the characteristic equation. The following

example involves a 3 × 3 matrix.

EXAMPLE 2 Eigenvalues of a 3 × 3 Matrix

Find the eigenvalues of

A =







0 1 0

0 0 1

4 −17 8







Solution

The characteristic polynomial of A is

det(λI − A) = det







λ −1 0

0 λ −1

−4 17 λ− 8






= λ3 − 8λ2 + 17λ− 4

The eigenvalues of A must therefore satisfy the cubic equation

λ3 − 8λ2 + 17λ− 4 = 0 (2)

To solve this equation, we shall begin by searching for integer solutions. This task can

be greatly simplified by exploiting the fact that all integer solutions (if there are any) to

a polynomial equation with integer coefficients

λn + c1λ
n−1 + · · · + cn = 0

must be divisors of the constant term, cn. Thus, the only possible integer solutions of (2)

are the divisors of −4, that is, ±1, ±2, ±4. Successively substituting these values in (2)

shows that λ = 4 is an integer solution. As a consequence, λ− 4 must be a factor of the
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left side of (2). Dividing λ− 4 into λ3 − 8λ2 + 17λ− 4 shows that (2) can be rewritten

as

(λ− 4)(λ2 − 4λ+ 1) = 0

Thus the remaining solutions of (2) satisfy the quadratic equation

λ2 − 4λ+ 1 = 0

which can be solved by the quadratic formula. Thus the eigenvalues of A are

λ = 4, λ = 2 +
√

3, and λ = 2 −
√

3 �

REMARK In practical problems, the matrix A is usually so large that computing the

characteristic equation is not practical. As a result, other methods are used to obtain

eigenvalues.

EXAMPLE 3 Eigenvalues of an Upper Triangular Matrix

Find the eigenvalues of the upper triangular matrix

A =











a11 a12 a13 a14

0 a22 a23 a24

0 0 a33 a34

0 0 0 a44











Solution

Recalling that the determinant of a triangular matrix is the product of the entries on the

main diagonal (Theorem 2.1.3), we obtain

det(λI − A) = det











λ− a11 −a12 −a13 −a14

0 λ− a22 −a23 −a24

0 0 λ− a33 −a34

0 0 0 λ− a44











= (λ− a11)(λ− a22)(λ− a33)(λ− a44)

Thus, the characteristic equation is

(λ− a11)(λ− a22)(λ− a33)(λ− a44) = 0

and the eigenvalues are

λ = a11, λ = a22, λ = a33, λ = a44

which are precisely the diagonal entries of A. �

The following general theorem should be evident from the computations in the pre-

ceding example.

T H E O R E M 7 . 1 . 1 If A is an n× n triangular matrix (upper triangular, lower triangular, or diagonal ),

then the eigenvalues of A are the entries on the main diagonal of A.
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EXAMPLE 4 Eigenvalues of a Lower Triangular Matrix

By inspection, the eigenvalues of the lower triangular matrix

A =









1

2
0 0

−1
2

3
0

5 −8 − 1

4









are λ = 1

2
, λ = 2

3
, and λ = − 1

4
. �

Complex

Eigenvalues

It is possible for the characteristic equation of a matrix with real entries to have complex

solutions. In fact, because the eigenvalues of ann× nmatrix are the roots of a polynomial

of precise degree n, every n× n matrix has exactly n eigenvalues if we count them as

we count the roots of a polynomial (meaning that they may be repeated, and may occur

in complex conjugate pairs). For example, the characteristic polynomial of the matrix

A =
[

−2 −1

5 2

]

is

det(λI − A) = det

[

λ+ 2 1

−5 λ− 2

]

= λ2 + 1

so the characteristic equation is λ2 + 1 = 0, the solutions of which are the imaginary

numbers λ = i and λ = −i. Thus we are forced to consider complex eigenvalues, even

for real matrices. This, in turn, leads us to consider the possibility of complex vector

spaces—that is, vector spaces in which scalars are allowed to have complex values. Such

vector spaces will be considered in Chapter 10. For now, we will allow complex eigen-

values, but we will limit our discussion of eigenvectors to the case of real eigenvalues.

The following theorem summarizes our discussion thus far.

T H E O R E M 7 . 1 . 2 Equivalent Statements

If A is an n× n matrix and λ is a real number, then the following are equivalent.

(a) λ is an eigenvalue of A.

(b) The system of equations (λI − A)x = 0 has nontrivial solutions.
(c) There is a nonzero vector x in Rn such that Ax = λx.

(d ) λ is a solution of the characteristic equation det(λI − A) = 0.

Finding Eigenvectors

and Bases for

Eigenspaces

Now thatweknowhow tofind eigenvalues, we turn to the problemoffinding eigenvectors.

The eigenvectors of A corresponding to an eigenvalue λ are the nonzero vectors x that

satisfy Ax = λx. Equivalently, the eigenvectors corresponding to λ are the nonzero

vectors in the solution space of (λI − A)x = 0—that is, in the null space of λI − A. We

call this solution space the eigenspace of A corresponding to λ.

EXAMPLE 5 Eigenvectors and Bases for Eigenspaces

Find bases for the eigenspaces of

A =







0 0 −2

1 2 1

1 0 3









364 • • • Chapter 7 / Eigenvalues, Eigenvectors

Solution

The characteristic equation of matrix A is λ3 − 5λ2 + 8λ− 4 = 0, or, in factored form,

(λ− 1)(λ− 2)2 = 0 (verify); thus the eigenvalues ofA are λ1 = 1 and λ2,3 = 2, so there

are two eigenspaces of A.

By definition,

x =







x1

x2

x3







is an eigenvector of A corresponding to λ if and only if x is a nontrivial solution of

(λI − A)x = 0—that is, of






λ 0 2

−1 λ− 2 −1

−1 0 λ− 3













x1

x2

x3






=







0

0

0






(3)

If λ = 2, then (3) becomes






2 0 2

−1 0 −1

−1 0 −1













x1

x2

x3






=







0

0

0







Solving this system using Gaussian elimination yields (verify)

x1 = −s, x2 = t, x3 = s

Thus, the eigenvectors of A corresponding to λ = 2 are the nonzero vectors of the form

x =







−s
t

s






=







−s
0

s






+







0

t

0






= s







−1

0

1






+ t







0

1

0







Since






−1

0

1






and







0

1

0







are linearly independent, these vectors form a basis for the eigenspace corresponding to

λ = 2.

If λ = 1, then (3) becomes






1 0 2

−1 −1 −1

−1 0 −2













x1

x2

x3






=







0

0

0







Solving this system yields (verify)

x1 = −2s, x2 = s, x3 = s

Thus the eigenvectors corresponding to λ = 1 are the nonzero vectors of the form






−2s

s

s






= s







−2

1

1






so that







−2

1

1







is a basis for the eigenspace corresponding to λ = 1. �
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Notice that the zero vector is in every eigenspace, although it isn’t an eigenvector.

Powers of a Matrix Once the eigenvalues and eigenvectors of a matrix A are found, it is a simple matter to

find the eigenvalues and eigenvectors of any positive integer power of A; for example,

if λ is an eigenvalue of A and x is a corresponding eigenvector, then

A2x = A(Ax) = A(λx) = λ(Ax) = λ(λx) = λ2x

which shows that λ2 is an eigenvalue of A2 and that x is a corresponding eigenvector. In

general, we have the following result.

T H E O R E M 7 . 1 . 3 If k is a positive integer, λ is an eigenvalue of a matrix A, and x is a corresponding

eigenvector, then λk is an eigenvalue of Ak and x is a corresponding eigenvector.

EXAMPLE 6 Using Theorem 7.1.3

In Example 5 we showed that the eigenvalues of

A =







0 0 −2

1 2 1

1 0 3







are λ = 2 and λ = 1, so from Theorem 7.1.3, both λ = 2
7 = 128 and λ = 1

7 = 1 are

eigenvalues of A7. We also showed that






−1

0

1






and







0

1

0







are eigenvectors ofA corresponding to the eigenvalueλ = 2, so fromTheorem7.1.3, they

are also eigenvectors of A7 corresponding to λ = 2
7 = 128. Similarly, the eigenvector







−2

1

1







of A corresponding to the eigenvalue λ = 1 is also an eigenvector of A7 corresponding

to λ = 1
7 = 1. �

Eigenvalues and

Invertibility

The next theorem establishes a relationship between the eigenvalues and the invertibility

of a matrix.

T H E O R E M 7 . 1 . 4 A square matrix A is invertible if and only if λ = 0 is not an eigenvalue of A.

Proof Assume that A is an n× n matrix and observe first that λ = 0 is a solution of

the characteristic equation

λn + c1λ
n−1 + · · · + cn = 0
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if and only if the constant term cn is zero. Thus it suffices to prove that A is invertible if

and only if cn �= 0. But

det(λI − A) = λn + c1λ
n−1 + · · · + cn

or, on setting λ = 0,

det(−A) = cn or (−1)n det(A) = cn

It follows from the last equation that det(A) = 0 if and only if cn = 0, and this in turn

implies that A is invertible if and only if cn �= 0. �

EXAMPLE 7 Using Theorem 7.1.4

ThematrixA in Example 5 is invertible since it has eigenvalues λ = 1 and λ = 2, neither

of which is zero. We leave it for the reader to check this conclusion by showing that

det(A) �= 0. �

Summary Theorem 7.1.4 enables us to add an additional result to Theorem 6.4.5.

T H E O R E M 7 . 1 . 5 Equivalent Statements

IfA is an n× nmatrix, and if TA:Rn → Rn is multiplication byA, then the following

are equivalent.

(a) A is invertible.

(b) Ax = 0 has only the trivial solution.

(c) The reduced row-echelon form of A is In.

(d ) A is expressible as a product of elementary matrices.

(e) Ax = b is consistent for every n× 1 matrix b.

( f ) Ax = b has exactly one solution for every n× 1 matrix b.

(g) det(A) �= 0.

(h) The range of TA is Rn.

(i ) TA is one-to-one.

( j) The column vectors of A are linearly independent.

(k) The row vectors of A are linearly independent.

(l ) The column vectors of A span Rn.

(m) The row vectors of A span Rn.

(n) The column vectors of A form a basis for Rn.

(o) The row vectors of A form a basis for Rn.

( p) A has rank n.

(q) A has nullity 0.

(r) The orthogonal complement of the nullspace of A is Rn.

(s) The orthogonal complement of the row space of A is {0}.
(t) ATA is invertible.

(u) λ = 0 is not an eigenvalue of A.

This theorem relates all of the major topics we have studied thus far.
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EXERCISE SET

7.1
1. Find the characteristic equations of the following matrices:

(a)

[

3 0

8 −1

]

(b)

[

10 −9

4 −2

]

(c)

[

0 3

4 0

]

(d)

[

−2 −7

1 2

]

(e)

[

0 0

0 0

]

(f )

[

1 0

0 1

]

2. Find the eigenvalues of the matrices in Exercise 1.

3. Find bases for the eigenspaces of the matrices in Exercise 1.

4. Find the characteristic equations of the following matrices:

(a)







4 0 1

−2 1 0

−2 0 1






(b)







3 0 −5

1

5
−1 0

1 1 −2






(c)







−2 0 1

−6 −2 0

19 5 −4







(d)







−1 0 1

−1 3 0

−4 13 −1






(e)







5 0 1

1 1 0

−7 1 0






(f )







5 6 2

0 −1 −8

1 0 −2







5. Find the eigenvalues of the matrices in Exercise 4.

6. Find bases for the eigenspaces of the matrices in Exercise 4.

7. Find the characteristic equations of the following matrices:

(a)











0 0 2 0

1 0 1 0

0 1 −2 0

0 0 0 1











(b)











10 −9 0 0

4 −2 0 0

0 0 −2 −7

0 0 1 2











8. Find the eigenvalues of the matrices in Exercise 7.

9. Find bases for the eigenspaces of the matrices in Exercise 7.

10. By inspection, find the eigenvalues of the following matrices:

(a)

[

−1 6

0 5

]

(b)







3 0 0

−2 7 0

4 8 1






(c)













− 1

3
0 0 0

0 − 1

3
0 0

0 0 1 0

0 0 0
1

2













11. Find the eigenvalues of A9 for

A =











1 3 7 11

0
1

2
3 8

0 0 0 4

0 0 0 2











12. Find the eigenvalues and bases for the eigenspaces of A25 for

A =







−1 −2 −2

1 2 1

−1 −1 0







13. LetA be a 2 × 2 matrix, and call a line through the origin of R2 invariant underA ifAx lies

on the line when x does. Find equations for all lines in R2, if any, that are invariant under

the given matrix.
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(a) A =

[

4 −1

2 1

]

(b) A =

[

0 1

−1 0

]

(c) A =

[

2 3

0 2

]

14. Find det(A) given that A has p(λ) as its characteristic polynomial.

(a) p(λ) = λ3 − 2λ2 + λ+ 5 (b) p(λ) = λ4 − λ3 + 7

Hint See the proof of Theorem 7.1.4.

15. Let A be an n× n matrix.

(a) Prove that the characteristic polynomial of A has degree n.

(b) Prove that the coefficient of λn in the characteristic polynomial is 1.

16. Show that the characteristic equation of a 2 × 2 matrix A can be expressed as

λ2 − tr(A)λ+ det(A) = 0, where tr(A) is the trace of A.

17. Use the result in Exercise 16 to show that if

A =

[

a b

c d

]

then the solutions of the characteristic equation of A are

λ = 1

2

[

(a + d)±
√

(a − d)2 + 4bc
]

Use this result to show that A has

(a) two distinct real eigenvalues if (a − d)2 + 4bc > 0

(b) two repeated real eigenvalues if (a − d)2 + 4bc = 0

(c) complex conjugate eigenvalues if (a − d)2 + 4bc < 0

18. Let A be the matrix in Exercise 17. Show that if (a − d)2 + 4bc > 0 and b �= 0, then

eigenvectors of A corresponding to the eigenvalues

λ1 = 1

2

[

(a + d)+
√

(a − d)2 + 4bc
]

and λ2 = 1

2

[

(a + d)−
√

(a − d)2 + 4bc
]

are
[

−b
a − λ1

]

and

[

−b
a − λ2

]

respectively.

19. Prove: If a, b, c, and d are integers such that a + b = c + d, then

A =

[

a b

c d

]

has integer eigenvalues—namely, λ1 = a + b and λ2 = a − c.

20. Prove: If λ is an eigenvalue of an invertible matrix A, and x is a corresponding eigenvector,

then 1/λ is an eigenvalue of A−1, and x is a corresponding eigenvector.

21. Prove: If λ is an eigenvalue of A, x is a corresponding eigenvector, and s is a scalar, then

λ− s is an eigenvalue of A− sI, and x is a corresponding eigenvector.

22. Find the eigenvalues and bases for the eigenspaces of

A =







−2 2 3

−2 3 2

−4 2 5







Then use Exercises 20 and 21 to find the eigenvalues and bases for the eigenspaces of

(a) A−1 (b) A− 3I (c) A+ 2I

23. (a) Prove that if A is a square matrix, then A and AT have the same eigenvalues.

Hint Look at the characteristic equation det(λI − A) = 0.
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(b) Show that A and AT need not have the same eigenspaces.

Hint Use the result in Exercise 18 to find a 2 × 2 matrix for which A and AT have

different eigenspaces.

Discussion
Discovery

24. Indicate whether each statement is always true or sometimes false. Justify your answer

by giving a logical argument or a counterexample. In each part, A is an n× n matrix.

(a) If Ax = λx for some nonzero scalar λ, then x is an eigenvector of A.

(b) If λ is not an eigenvalue of A, then the linear system (λI − A)x = 0 has only the

trivial solution.

(c) If λ = 0 is an eigenvalue of A, then A2 is singular.

(d) If the characteristic polynomial of A is p(λ) = λn + 1, then A is invertible.

25. Suppose that the characteristic polynomial of some matrix A is found to be p(λ) =
(λ− 1)(λ− 3)2(λ− 4)3. In each part, answer the question and explain your reasoning.

(a) What is the size of A?

(b) Is A invertible?

(c) How many eigenspaces does A have?

26. The eigenvectors that we have been studying are sometimes called right eigenvectors

to distinguish them from left eigenvectors, which are n× 1 column matrices x that

satisfy xTA = µxT for some scalar µ. What is the relationship, if any, between the

right eigenvectors and corresponding eigenvalues λ of A and the left eigenvectors and

corresponding eigenvalues µ of A?


