Solutions \& marking scheme:

[7] 1. Let $\mathbf{u}=(1,2,-1,1)$ and $\mathbf{v}=(2,-1,2,0)$.
(a) Compute $(\mathbf{u} \cdot \mathbf{v})(\mathbf{u}+\mathbf{v})$.
(b) Find a vector \mathbf{w} that is orthogonal to \mathbf{u}.

Solution. (a) $\mathbf{u} \cdot \mathbf{v}(\mathbf{u}+\mathbf{v})=(2-2-2)(3,1,1,1)=(-6,-2,-2,-2)$.
(b) For example $\mathbf{w}=(2,-1,0,0)$ is such.
[9] 2. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the rotation around the origin through the angle of 45° (or $\frac{\pi}{4}$ radians).
(a) Write down the standard matrix corresponding to T.
(b) Find $T(2,7)$.

Solution. (a) The standard matrix corresponding to T is
$\left[\begin{array}{cc}\cos 45^{\circ} & -\sin 45^{\circ} \\ \sin 45^{\circ} & \cos 45^{\circ}\end{array}\right]=\left[\begin{array}{cc}\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}\end{array}\right]=\frac{\sqrt{2}}{2}\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]$.
(b) $\frac{\sqrt{2}}{2}\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]\left[\begin{array}{l}2 \\ 7\end{array}\right]=\frac{\sqrt{2}}{2}\left[\begin{array}{c}-5 \\ 9\end{array}\right]$. So $T(2,7)=\frac{\sqrt{2}}{2}(-5,9)$.
[9] 3. The matrix of the linear transformation $T_{1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is $\left[\begin{array}{cc}1 & 2 \\ -2 & -4\end{array}\right]$, and the matrix of the linear transformation $T_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is $\left[\begin{array}{cc}1 & 2 \\ -2 & -3\end{array}\right]$.
(a) Which of T_{1} and T_{2} is one-to-one. Justify your answer.
(b) Find the matrix of the linear transformation $T_{2} \circ T_{1}$.

Solution. (a) The matrix $\left[\begin{array}{cc}1 & 2 \\ -2 & -3\end{array}\right]$ is invertible (since its determinant is not 0), and the matrix $\left[\begin{array}{cc}1 & 2 \\ -2 & -4\end{array}\right]$ is not invertible (since its determinant is 0). Hence T_{2} is one-to-one, and T_{1} is not one-to-one.
(b) The matrix corresponding to $T_{2} \circ T_{1}$ is $\left[\begin{array}{cc}1 & 2 \\ -2 & -3\end{array}\right]\left[\begin{array}{cc}1 & 2 \\ -2 & -4\end{array}\right]=\left[\begin{array}{cc}-3 & -6 \\ 6 & 8\end{array}\right]$. (Note the order in the product matters.)

