Solutions & marking scheme:

[8] 1. Let u = (1,2,-1) and v = (2,-1,2).
(a) Compute u · v.
(b) Find cosθ, where θ is the angle between the two vectors.

Solution. (a)
$$\mathbf{u} \cdot \mathbf{v} = 2 - 2 - 2 = -2$$
.
(b) $\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{u}|| |\mathbf{v}||} = \frac{-2}{\sqrt{6}\sqrt{9}}$.

[7] 2. Find the volume of the parallelepiped having $\mathbf{u} = (1,2,1)$, $\mathbf{v} = (-1,2,0)$ and $\mathbf{w} = (0,1,1)$ as three adjacent edges.

Solution. The volume is $|\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})|$ which in turn is $\begin{vmatrix} 1 & 2 & 1 \\ -1 & 2 & 0 \\ 0 & 1 & 1 \end{vmatrix} = 2 - 1 + 2 = 3.$

[10] 3. Consider the line *l* defined by x = 2t - 1, y = t + 1, z = -t, $t \in \mathbb{R}$, and the plane Σ defined by x - y + z + 3 = 0.

- (a) Are the line and the plane parallel? Why?
- (b) If *l* and Σ are parallel, then compute the distance between the two.

Solution. (a) $\mathbf{v} = (2,1,-1)$ is a vector parallel to *l*, and $\mathbf{n} = (1,-1,1)$ is orthogonal to Σ . Since $\mathbf{v} \cdot \mathbf{n} = 0$ the two vectors are orthogonal. Hence *l* is indeed parallel to Σ .

(Alternative: show that the system defined by all equations for l and Σ is inconsistent.)

(b) (-1,1,0) is a point on *l*. The distance from that point to Σ is $\frac{|-1-1+0+3|}{\sqrt{1+1+1}} = \frac{1}{\sqrt{3}}$.

B16.