MATH 1300: Test \#4 (Fall 2012)

Solutions \& marking scheme:

[8] 1. Let $\mathbf{u}=(1,2,-1)$ and $\mathbf{v}=(2,-1,2)$.
(a) Compute $\mathbf{u} \cdot \mathbf{v}$.
(b) Find $\cos \theta$, where θ is the angle between the two vectors.

Solution. (a) $\mathbf{u} \cdot \mathbf{v}=2-2-2=-2$.
(b) $\cos \theta=\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \mid \mathbf{v} \|}=\frac{-2}{\sqrt{6} \sqrt{9}}$.
[7] 2. Find the volume of the parallelepiped having $\mathbf{u}=(1,2,1), \mathbf{v}=(-1,2,0)$ and $\mathbf{w}=(0,1,1)$ as three adjacent edges.

Solution. The volume is $|\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})|$ which in turn is $\left|\begin{array}{ccc}1 & 2 & 1 \\ -1 & 2 & 0 \\ 0 & 1 & 1\end{array}\right|=2-1+2=3$.
[10] 3. Consider the line l defined by $x=2 t-1, y=t+1, z=-t, t \in \mathbb{R}$, and the plane Σ defined by $x-y+z+3=0$.
(a) Are the line and the plane parallel? Why?
(b) If l and Σ are parallel, then compute the distance between the two.

Solution. (a) $\mathbf{v}=(2,1,-1)$ is a vector parallel to l, and $\mathbf{n}=(1,-1,1)$ is orthogonal to Σ. Since $\mathbf{v} \cdot \mathbf{n}=0$ the two vectors are orthogonal. Hence l is indeed parallel to Σ.
(Alternative: show that the system defined by all equations for l and Σ is inconsistent.)
(b) $(-1,1,0)$ is a point on l. The distance from that point to Σ is $\frac{|-1-1+0+3|}{\sqrt{1+1+1}}=\frac{1}{\sqrt{3}}$.

