MATH 1300: Test #3 (Fall 2012)

Solution & marking scheme:

B15.

[8] 1. Let
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$
 and let $B = \begin{bmatrix} 1 & -1 & 3 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$ Find

- (a) Compute $\det A^{-1}$.
- (b) Compute det(A + B).

Solution. (a) det(A) = 2 and so $det A^{-1} = \frac{1}{2}$.

(b)
$$A + B = \begin{bmatrix} 2 & 1 & 6 \\ 3 & 1 & 1 \\ 0 & 2 & 2 \end{bmatrix}$$
 and $det(A + B) = 30$.

[9] 2. Suppose A, B and C are 3×3 matrices such that $\det A = 4$, $\det C = 5$, and such that 2AB = C. Find $\det B$.

Solution. det(2AB) = det C, so $2^3 (det A)(det B) = det C$, and so $det B = \frac{det C}{8 det A} = \frac{5}{32}$.

[8] 3. Let
$$\mathbf{u} = (3,0,4)$$
 and $\mathbf{v} = (1,2,-1)$.

- (a) Compute $2\mathbf{u} 3\mathbf{v}$.
- (b) Find the coordinates of the unit vector in the direction of u.

Solution. (a)
$$2\mathbf{u} - 3\mathbf{v} = (6,0,8) - (3,6,-3) = (3,-6,11)$$
.

$$||\mathbf{u}|| = \sqrt{3^2 + 4^2} = 5$$
 and so $\frac{1}{5}(3,0,4) = \left(\frac{3}{5},0,\frac{4}{5}\right)$ is the desired vector.