Solution \& marking scheme:

[8] 1. We row-reduce the matrix $A=\left[\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right]$ to the identity matrix as follows:
$\left[\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right] \longrightarrow\left[\begin{array}{cc}1 & 2 \\ 0 & -1\end{array}\right] \longrightarrow\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right] \longrightarrow\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$. Find elementary matrices E_{1}, E_{2} and E_{3} such that $E_{3} E_{2} E_{1} A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.
Solution. The first row operation above corresponds to the elementary matrix $E_{1}=\left[\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right]$, the second row operation corresponds to $E_{2}=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$, and the third row operation corresponds to $E_{3}=\left[\begin{array}{cc}1 & -2 \\ 0 & 1\end{array}\right]$. According to our theory we have $E_{3} E_{2} E_{1} A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ as required.
[9] 2. Find all numbers k such that the matrix $\left[\begin{array}{cc}1 & 0 \\ 1 & k-2\end{array}\right]$ is invertible. Justify your answer.

Solution. A square matrix is invertible if and only if its RREF is the identity matrix. Reducing the given matrix a bit yields $\left[\begin{array}{cc}1 & 0 \\ 1 & k-2\end{array}\right] \longrightarrow\left[\begin{array}{cc}1 & 0 \\ 0 & k-2\end{array}\right]$. If $k-2 \neq 0$ then multiplying the second row by $1 / k-2$ will produce the identity matrix. So, if $k \neq 2$ then the matrix is invertible. On the other hand, if $k=2$ then the matrix $\left[\begin{array}{cc}1 & 0 \\ 0 & k-2\end{array}\right]$ is already in RREF, and since it is not the identity matrix, the original matrix in that case is not invertible.
[8] 3. Compute $\operatorname{det}(A)$ if (a) $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 1 & 1 \\ 0 & 1 & 1\end{array}\right]$, (b) $A=\left[\begin{array}{lllll}1 & 0 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 & 0 \\ 2 & 1 & 2 & 0 & 0 \\ 1 & 1 & 1 & 2 & 0 \\ 1 & 2 & 2 & 2 & 2\end{array}\right]$.
Solution. (a) using whatever method gives $\operatorname{det}(A)=1$. (b) This is a lower triangular matrix, and so its determinant is the product of the entries on the main diagonal, which comes to 16 .

