B05.

MATH 1300: Test \#2 (Fall 2010)

Solution \& marking scheme:

[8] 1. Use row reduction to find the inverse of the matrix $\left[\begin{array}{lll}1 & 1 & 2 \\ 0 & 0 & 1 \\ 0 & 1 & 2\end{array}\right]$ (You will get no points if other methods are used.)
Solution.
$\left[\begin{array}{lllllll}1 & 1 & 2 & \mid & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 2 & 1 & 0 & 0 & 1\end{array}\right] \xrightarrow{R_{2} \leftrightarrow R_{3}}\left[\begin{array}{lllllll}1 & 1 & 2 & \mid & 1 & 0 & 0 \\ 0 & 1 & 2 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0\end{array}\right] \xrightarrow{(-1) R_{2} t 0 R_{1}}\left[\begin{array}{llllllc}1 & 0 & 0 & 1 & 1 & 0 & -1 \\ 0 & 1 & 2 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0\end{array}\right.$
$\xrightarrow{(-2) R_{3} เ R_{2}}\left[\begin{array}{ccccccc}1 & 0 & 0 & 1 & 1 & 0 & -1 \\ 0 & 1 & 0 & 1 & 0 & -2 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0\end{array}\right]$.
[9] 2. (a) If $A^{-1}=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$, find A.
(b) If A is the matrix in part (a) and B is obtained from A by switching the two rows, find the elementary matrix E such that $E A=B$.
Solution. (a) A is the inverse of A^{-1}; using the formula for inverses of 2×2 matrices (or any other method) we find $A=\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right]$.
(b) E is obtained from $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ by the same row operation (switching the two rows). So, $E=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.
[9] 3. We are given $B=\left[\begin{array}{ccc}1 & 0 & 0 \\ 1 & -1 & 1 \\ 1 & -1 & 0\end{array}\right]$. (a) $\operatorname{Compute} \operatorname{det}(B)(\mathbf{b}) \operatorname{Adj}(B)=\left[\begin{array}{ccc}1 & 0 & 0 \\ 1 & 0 & b \\ 0 & a & -1\end{array}\right]$, where a and b are not known. Find them. (c) Find B^{-1} using parts (a) and (b).
Solution. (a) Expanding along the first row (or using any other method) we get $\operatorname{det}(B)=1$.
(b) Computing from $B: a=C_{23}=1, b=C_{32}=-1$. So: $\operatorname{Adj}(B)=\left[\begin{array}{ccc}1 & 0 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & -1\end{array}\right]$.
(c) It follows from (a) and (b) that $B^{-1}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & -1\end{array}\right]$.

