MATH 1300: Quiz #4 Solutions

1. (a) Consider the set *S* of all polynomials of type $ax^2 + (2a - 3)x + b$, where *a* and *b* range through the set of all real numbers. Is *S* a subspace of the vector space \mathbb{I}_2 of all polynomials of degree at most 2? Justify your answer.

(b) Consider the set W of all triples of type (a,0,b), where a and b range through the set of all real numbers. Is W a subspace of the Euclidean vector space \mathbb{R}^3 ? Justify your answer.

Solution. (a) It is not a subspace. For example, the zero polynomial is not in S.

- (**b**) This is a subspace:
- $(a_1, 0, b_1) + (a_2, 0, b_2) = (a_1 + a_2, 0, b_1 + b_2)$ is in W
- $k(a_1, 0, b_1) = (ka_1, 0, kb_1)$ is in W.

2. Let *U* be the subspace of the Euclidean vector space \mathbb{R}^3 consisting of all triples of type (a,b,0), where *a* and *b* range through the set of all real numbers, and let $S = \{(2,0,0), (0,5,0)\}$. Show that span(S) = U.

Solution.
$$(a,b,0) = \frac{a}{2}(3,0,0) + \frac{b}{5}(0,5,0)$$
.

3. Is the subset $S = \{(1,0,0), (0,1,0), (1,2,3)\}$ of vectors in \mathbb{R}^3 linearly independent? Justify your answer.

Solution. $k_1(1,0,0) + k_2(0,1,0) + k_3(1,2,3) = (0,0,0)$ reduces to solving the system $k_1 + k_3 = 0$ $k_2 + 2k_3 = 0$ $3k_3 = 0$

It is obvious that the only solution to that system is $k_1 = 0$, $k_2 = 0$, $k_3 = 0$, and so S is linearly independent

B13.