B13.

MATH 1300: Quiz \#4

Solutions

1. (a) Consider the set S of all polynomials of type $a x^{2}+(2 a-3) x+b$, where a and b range through the set of all real numbers. Is S a subspace of the vector space \mathbb{P}_{2} of all polynomials of degree at most 2? Justify your answer.
(b) Consider the set W of all triples of type ($a, 0, b$), where a and b range through the set of all real numbers. Is W a subspace of the Euclidean vector space \mathbb{R}^{3} ? Justify your answer.

Solution. (a) It is not a subspace. For example, the zero polynomial is not in S.
(b) This is a subspace:

- $\left(a_{1}, 0, b_{1}\right)+\left(a_{2}, 0, b_{2}\right)=\left(a_{1}+a_{2}, 0, b_{1}+b_{2}\right)$ is in W
- $k\left(a_{1}, 0, b_{1}\right)=\left(k a_{1}, 0, k b_{1}\right)$ is in W.

2. Let U be the subspace of the Euclidean vector space \mathbb{R}^{3} consisting of all triples of type $(a, b, 0)$, where a and b range through the set of all real numbers, and let $S=\{(2,0,0),(0,5,0)\}$. Show that $\operatorname{span}(S)=U$.

Solution. $(a, b, 0)=\frac{a}{2}(3,0,0)+\frac{b}{5}(0,5,0)$.
3. Is the subset $S=\{(1,0,0),(0,1,0),(1,2,3)\}$ of vectors in \mathbb{R}^{3} linearly independent? Justify your answer.

Solution. $k_{1}(1,0,0)+k_{2}(0,1,0)+k_{3}(1,2,3)=(0,0,0)$ reduces to solving the system

$$
\begin{aligned}
k_{1} \quad+k_{3} & =0 \\
k_{2}+2 k_{3} & =0 \\
3 k_{3} & =0
\end{aligned}
$$

It is obvious that the only solution to that system is $k_{1}=0, k_{2}=0, k_{3}=0$, and so S is linearly independent

