MATH 1300: Quiz \#3

 Solutions1. Suppose $\mathbf{u}=(1,2,3)$ and $\mathbf{v}=(-2,1,0)$
(a) Compute $2 \mathbf{u}-\mathbf{v}$.
(b) Find the components of a vector \mathbf{w} such that $2 \mathbf{w}-\mathbf{v}=\mathbf{u}$.
(c) Find the unit vector in the direction of \mathbf{v}.
(d) Find any (non-zero) vector \mathbf{z} that is perpendicular to the vector \mathbf{u}.
(e) Find the cosine of the angle between the vector \mathbf{u} and the vector $\mathbf{e}=(1,0,0)$. Do not simplify your answer.

Solution.

(a) $2 \mathbf{u}-\mathbf{v}=(2,4,6)-(-2,1,0)=(4,3,6)$.
(b) $2 \mathbf{w}-\mathbf{v}=\mathbf{u}$ gives $\mathbf{w}=\frac{1}{2}(\mathbf{u}+\mathbf{v})=\frac{1}{2}(-1,3,3)=\left(-\frac{1}{2}, \frac{3}{2}, \frac{3}{2}\right)$.
(c) $\|\mathbf{v}\|=\sqrt{4+1+0}=\sqrt{5}$, and so $\frac{1}{\sqrt{5}}(-2,1,0)$ is the unit vector in the direction of \mathbf{v}.
(d) $\mathbf{z}=(-2,1,0)$ is one such, since $\mathbf{z} \cdot \mathbf{u}=0$.
(e) Denote by θ the angle between \mathbf{u} and \mathbf{e}. Then we have $\cos \theta=\frac{\mathbf{u} \cdot \mathbf{e}}{\|\mathbf{u}\|\|\mathbf{e}\|}=\frac{1}{\sqrt{14}}$.

