

B15.

MATH 1300: Quiz #3 Solutions

1. Suppose $\mathbf{u} = (1, 2, 3)$ and $\mathbf{v} = (-2, 1, 0)$

(a) Compute $2\mathbf{u} - \mathbf{v}$.

(b) Find the components of a vector \mathbf{w} such that $2\mathbf{w} - \mathbf{v} = \mathbf{u}$.

(c) Find the unit vector in the direction of \mathbf{v} .

(d) Find any (non-zero) vector \mathbf{z} that is perpendicular to the vector \mathbf{u} .

(e) Find the cosine of the angle between the vector \mathbf{u} and the vector $\mathbf{e} = (1, 0, 0)$. Do not simplify your answer.

Solution.

(a) $2\mathbf{u} - \mathbf{v} = (2, 4, 6) - (-2, 1, 0) = (4, 3, 6)$.

(b) $2\mathbf{w} - \mathbf{v} = \mathbf{u}$ gives $\mathbf{w} = \frac{1}{2}(\mathbf{u} + \mathbf{v}) = \frac{1}{2}(-1, 3, 3) = \left(-\frac{1}{2}, \frac{3}{2}, \frac{3}{2}\right)$.

(c) $\|\mathbf{v}\| = \sqrt{4+1+0} = \sqrt{5}$, and so $\frac{1}{\sqrt{5}}(-2, 1, 0)$ is the unit vector in the direction of \mathbf{v} .

(d) $\mathbf{z} = (-2, 1, 0)$ is one such, since $\mathbf{z} \cdot \mathbf{u} = 0$.

(e) Denote by θ the angle between \mathbf{u} and \mathbf{e} . Then we have $\cos \theta = \frac{\mathbf{u} \cdot \mathbf{e}}{\|\mathbf{u}\| \|\mathbf{e}\|} = \frac{1}{\sqrt{14}}$.