B15.

MATH 1300: Quiz #3 Solutions

1. Suppose $\mathbf{u} = (1, 2, 3)$ and $\mathbf{v} = (-2, 1, 0)$

(a) Compute 2u - v.

(b) Find the components of a vector w such that 2w - v = u.

(c) Find the unit vector in the direction of v.

(d) Find any (non-zero) vector **z** that is perpendicular to the vector **u**.

(e) Find the cosine of the angle between the vector \mathbf{u} and the vector $\mathbf{e} = (1,0,0)$. Do not simplify your answer.

Solution.

- (a) $2\mathbf{u} \mathbf{v} = (2,4,6) (-2,1,0) = (4,3,6)$. (b) $2\mathbf{w} - \mathbf{v} = \mathbf{u}$ gives $\mathbf{w} = \frac{1}{2}(\mathbf{u} + \mathbf{v}) = \frac{1}{2}(-1,3,3) = (-\frac{1}{2},\frac{3}{2},\frac{3}{2})$. (c) $\|\mathbf{v}\| = \sqrt{4+1+0} = \sqrt{5}$, and so $\frac{1}{\sqrt{5}}(-2,1,0)$ is the unit vector in the direction of \mathbf{v} .
- (d) z = (-2, 1, 0) is one such, since $z \cdot u = 0$.

(e) Denote by θ the angle between **u** and **e**. Then we have $\cos\theta = \frac{\mathbf{u} \cdot \mathbf{e}}{\|\mathbf{u}\| \|\mathbf{e}\|} = \frac{1}{\sqrt{14}}$.