B14.

MATH 1300: Test \#2

Solutions

1. Use row reduction to find the inverse of the matrix $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 2\end{array}\right]$. (No marks will be given if other methods are used.)

Solution. Start with the augmented matrix then row reduce up to RRE form:

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
1 & 0 & 0 \vdots 1 & 0 & 0 \\
0 & 1 & 1 \vdots 0 & 1 & 0 \\
1 & 1 & 2 \vdots 0 & 0 & 1
\end{array}\right] \xrightarrow{-R_{1} \text { to } R_{3}}\left[\begin{array}{ccc:cc}
1 & 0 & 0 \vdots 1 & 0 & 0 \\
0 & 1 & 1 \vdots 0 & 1 & 0 \\
0 & 1 & 2 \vdots-1 & 0 & 1
\end{array}\right] \xrightarrow{-R_{2} \text { to } R_{3}}\left[\begin{array}{cccccc}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 \vdots & 0 & 1 & 0 \\
0 & 0 & 1 & -1 & -1 & 1
\end{array}\right]} \\
& \xrightarrow{-R_{3} \text { to } R_{2}}\left[\begin{array}{ccccc}
1 & 0 & 0 & \vdots & 0 \\
0 & 1 & 0 & 1 & 2
\end{array}-1\right.
\end{aligned}
$$

So the inverse of the given matrix is $\left[\begin{array}{ccc}1 & 0 & 0 \\ 1 & 2 & -1 \\ -1 & -1 & 1\end{array}\right]$.
2. Suppose A is a 3×3 matrix such that $A^{2}+3 A=I$ (where, as usual, I is the identity matrix of the same size), and suppose $(A+3 I)^{T}=B$. Find A^{-1} in terms of B.
Solution. Starting from $A^{2}+3 A=I$ and multiplying both sides by A^{-1} (on any side) we get $A+3 I=A^{-1}$. So, $A^{-1}=B^{T}$.
3. Compute the determinant of $\left[\begin{array}{lll}1 & 1 & 1 \\ 2 & 1 & 0 \\ 1 & 3 & 1\end{array}\right]$.

Solution. Expanding along the third column gives $\left|\begin{array}{lll}1 & 1 & 1 \\ 2 & 1 & 0 \\ 1 & 3 & 1\end{array}\right|=1(-1)^{1+3}(6-1)+0+1(-1)^{3+3}(1-2)=4$.

