

B13.

MATH 1300: Test #1

Solutions

1. Use **Gauss-Jordan elimination** to solve the following system. Show your work describing your steps. State clearly your final answer. (No marks will be given if you do not use Gauss-Jordan elimination!)

$$\begin{array}{rcl} x + y - z & = & 0 \\ 2y - 2z & = & -2 \\ 3z & = & 3 \end{array}$$

Solution. Start with the augmented matrix then row reduce up to RRE form:

$$\left[\begin{array}{cccc} 1 & 1 & -1 & 0 \\ 0 & 2 & -2 & -2 \\ 0 & 0 & 3 & 3 \end{array} \right] \xrightarrow{\frac{1}{3}R_3} \left[\begin{array}{cccc} 1 & 1 & -1 & 0 \\ 0 & 2 & -2 & -2 \\ 0 & 0 & 1 & 1 \end{array} \right] \xrightarrow{2R_3 \text{ to } R_3} \left[\begin{array}{cccc} 1 & 1 & -1 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{array} \right]$$

$$\xrightarrow{\frac{1}{2}R_2} \left[\begin{array}{cccc} 1 & 1 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{array} \right] \xrightarrow{(-1R_2 \text{ to } R_1)} \left[\begin{array}{cccc} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{array} \right] \xrightarrow{R_3 \text{ to } R_1} \left[\begin{array}{cccc} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{array} \right]$$

$$x = 1$$

The system associated to the last RRE form matrix is $y = 0$. So $(1,0,0)$ is the only $z = 0$

solutions of the original system.

2. We are given

$$A = \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix}, B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ -1 & 2 \end{bmatrix}, \text{ and } C = \begin{bmatrix} 1 & -3 & 2 \\ 1 & -1 & 0 \end{bmatrix}$$

Perform the operation if possible or indicate it is not possible. (a) $(3A)(2B)$ (b) $(CB)+A$ (c) $(-2)B - C^T$

Solution. (a) $(3A)(2B)$ cannot be done since the sizes of $3A$ and $2B$ are incompatible.

$$(b) (CB)+A = \begin{bmatrix} 1 & -3 & 2 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ -1 & 2 \end{bmatrix} + \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} -1 & 2 \\ 1 & 0 \end{bmatrix} + \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix}.$$

$$(c) (-2)B - C^T = (-2) \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ -1 & 2 \end{bmatrix} - \begin{bmatrix} 1 & -3 & 2 \\ 1 & -1 & 0 \end{bmatrix}^T = \begin{bmatrix} -2 & -2 \\ 0 & -2 \\ 2 & -4 \end{bmatrix} - \begin{bmatrix} 1 & 1 \\ -3 & -1 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} -3 & -3 \\ 3 & -1 \\ 0 & -4 \end{bmatrix}.$$

3. Write down the inverse of the given matrix, if the inverse exists. Otherwise state that the matrix is not invertible.

$$(a) A = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \quad (b) B = \begin{bmatrix} 6 & 0 \\ 3 & 0 \end{bmatrix}$$

$$\text{Solution: (a)} A^{-1} = \begin{bmatrix} \frac{1}{3} & 0 \\ 0 & \frac{1}{2} \end{bmatrix} \quad \text{(b) B is not invertible.}$$