136.130: Test \#4 Solutions

1. Find the rank of the following matrix.
(a) $\begin{array}{lll}1 & 0 & 2 \\ 1 & 0 & 2 \\ 1 & 0 & 2\end{array}$

This matrix can obviously be row reduced to $\begin{array}{lllll}0 & 0 & 0 & \text { so that the row reduced }\end{array}$ $0 \quad 0 \quad 0$
echelon form will have one non-zero row. So the rank of the matrix is 1 .
(b) $\begin{array}{lll}1 & 1 & y \\ 1 & 2 & y\end{array}$, where x and y are any numbers.
$\begin{array}{lllllll}1 & 1 & y \\ 1 & 2 & y\end{array}$ (1) 1st to 2nd $\quad \begin{array}{lll}1 & 1 & y \\ 0 & 1 & 0\end{array}$ yields the row reduced echelon form. There are 2 non-zero rows, so the rank is 2 .
2. Compute the determinants of the following matrices.
(a) $\mathbf{A}=\begin{array}{lll}1 & 2 & 1 \\ 3 & 0 & 3 \\ 3 & 2 & 3\end{array}$
$\operatorname{det} \mathbf{A}=\mathbf{0}$, since there are two equal columns.
(b) $\mathbf{B}=\begin{array}{ccc}2 & 2 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 3\end{array}$

This is a diagonal matrix and $\operatorname{det} \mathbf{B}=(2)(2)(=3) \quad 12$.
(c) $\mathbf{C}=\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}$

Expand along the first row to get $\operatorname{det} C=\left(\begin{array}{lllll}(1)(1)^{1+1} \operatorname{det} & 1 & 0 & 0 & =(1) \\ & 0 & 0 & 1\end{array}\right)$
3. Suppose $\mathbf{A}=\begin{array}{ccc}1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1\end{array}$. Show that A is invertible. Find $\operatorname{det}\left(\mathbf{A}^{1}\right)$.

The matrix is diagonal and $\operatorname{det} \mathbf{A}=2$. Since that is not $0, A$ is invertible. We have $\operatorname{det}\left(\mathbf{A}^{1}\right)=\frac{1}{\operatorname{det} \mathbf{A}}=\frac{1}{2}$.

